Lecture 3: Informed (Heuristic) Search

Best-First (Greedy) Search

Heuristic Search

e A* search

Proof of optimality of A*

Variations: iterative deepening, real-time search, macro-actions

COMP-424, Lecture 3 - January 14, 2013 1

Recall from last time: General search

States ready to f(A)
be expanded
(the “fringe”)

states expanc

e Problems are described through states, operators and costs
e For each state and operator, there is a set of successor states

e In search, we maintain a set of nodes, each containing a state and other
info (e.g. cost so far, pointer to parent etc)

e These nodes form a search tree

e The fringe of the tree contains candidate nodes, and is typically
maintained using a priority queue

e Different search algorithms use different priority functions f

COMP-424, Lecture 3 - January 14, 2013 2




Uninformed vs. informed search

e Uninformed search methods expand nodes based on the distance from
the start node. Obviously, we always know that!

e Informed search methods also use some estimate of the distance to the
goal h(n), called a heuristic.

e If we knew the distance to goal exactly, it would not even be “search” -
we could just be greedy!

e But even if we do not know the exact distance, we often have some
intuition about this distance:

— The straight line between two points, in a navigation problem
— The number of misplaced tiles in the 8-puzzle

e The heuristic is often the result of thinking about a relaxed version of
the problem.

COMP-424, Lecture 3 - January 14, 2013 3

Best-First Search

e Algorithm: At any time, expand the most promising node according to
the heuristic

e This is roughly the “opposite” of uniform-cost search

e Example:

At node A, we choose to go to node C, because it has a better heuristic
value, instead of not B, which is really optimal

COMP-424, Lecture 3 - January 14, 2013 4




Properties of best-first search

Time complexity: O(b?) (where b is the branching factor and d is the
depth of the solution)

If the heuristic is always 0, best-first search is the same as breadth-first
search - so in the worst-case, it will have exponential space complexity

However, depending on the heuristic, the expansion may look a lot like
depth-first search - so space complexity may look like O(bd).

Like DFS, best-first search is not complete in general

— Can go on forever in infinite state space
— In finite state space, can get stuck in loops unless we use a closed list

Not optimal! (as seen in the example)
Best-first search is a greedy method.

Greedy methods maximize short-term advantage without worrying about
long-term consequences.

COMP-424, Lecture 3 - January 14, 2013 5

Fixing greedy search

The problem with best-first search is that it is too greedy: it does not
take into account the cost so far!

Let g be the cost of the path so far
Let h be a heuristic function (estimated cost to go)

Heuristic search is a best-first search, greedy with respect to
f=9+h

Important insight: f = g + h as an estimate of the cost of the current
path

COMP-424, Lecture 3 - January 14, 2013 6




Heuristic Search Algorithm

e At every step:

1. Dequeue node n from the front of the queue
2. Enqueue all its successors n’ with priorities:

f(n) = gn')+hn')
= cost of getting to n’ + estimated cost from n’ to goal

3. Terminate when a goal state is popped from the queue.

e Does this work on our previous example?

4
START2 1/3\1 C2
e (=)

COMP-424, Lecture 3 - January 14, 2013

Example
(s)
1 1
h=6 / h=3
2

T O
6

G)

Priority queue: (S,h(S))

COMP-424, Lecture 3 - January 14, 2013




Example
(s)
| 1
ot h:3
2
7 h=2
@/6©

Priority queue: ((B,4),(A,7))

COMP-424, Lecture 3 - January 14, 2013 9

Example
(s)
| 1
ot h:3
2
7 h=2
@/6©

Priority queue: ((C,5),(A,7))

COMP-424, Lecture 3 - January 14, 2013 10




Example
(s)
1 1
h=6 / h=3
2
! h=2
@/6©

Priority queue: ((A,7), (G,9))

COMP-424, Lecture 3 - January 14, 2013 11

Example
(s)
1 1
h=6 / h=3
2
! h=2
@/6©

Priority queue: ((G,8), (G,9)) = the optimal path through A is found!

COMP-424, Lecture 3 - January 14, 2013 12




Does heuristic search always give the optimal solution?

e Whether the solution is optimal depends on the heuristic

e E.g., in the example above, any value of h(A) > 3 will lead to the
discovery of a suboptimal path

e Can we put conditions on the choice of heuristic to guarantee optimality?

COMP-424, Lecture 3 - January 14, 2013 13

Admissible heuristics

Let A*(n) be the shortest path from n to any goal state.
Heuristic h is called admissible if h(n) < h*(n)vn.
Admissible heuristics are optimistic

Note that if & is admissible, then h(g) =0,Vg € G

A trivial case of an admissible heuristic is h(n) = 0, Vn.

— In this case, heuristic search becomes uniform-cost search!

COMP-424, Lecture 3 - January 14, 2013 14




Examples of admissible heuristics

Robot navigation: straight-line distance to goal

8-puzzle: number of misplaced tiles

8-puzzle: sum of Manhattan distances for each tile to its goal position
(why?)

In general, if we get a heuristic by solving a relaxed version of a problem,
we will obtain an admissible heuristic (why?)

COMP-424, Lecture 3 - January 14, 2013 15

A* search

Heuristic search with an admissible heuristic!

Let g be the cost of the path so far
Let A be an admissible heuristic function

l.e. h is optimistic, it never overestimates the actual cost to the goal

Do a greedy search with respect to

f=g+h

COMP-424, Lecture 3 - January 14, 2013 16




A* Pseudocode

1. Initialize the queue with (S, f(.5)), where S is the start state
2. While queue is not empty:

(a) Pop node n with lowest priority from the priority queue; let s be the
associated state and f(s) the associated priority value
(b) If s is a goal state, return success (follow back pointers from n to
extract best path)
(c) Else, for all states s’ € Successor(s)
i. Compute f(s') = g(s') + h(s') = g(s) + cost(s, s") + h(s)
ii. If s was previously expanded and the new f(s’) is smaller, or if s’
has not been expanded, or if s’ is already in the queue, then create
node n’ with priority f(s’) and insert it in the queue; else do nothing

COMP-424, Lecture 3 - January 14, 2013 17

Consistency

e An admissible heuristic h is called consistent if for every state s and for
every successor s,

h(s) < c(s,s’) + h(s)

e This is a version of triangle inequality, so heuristics that respect this
inequality are metrics.

e If you think of h as estimating “distance to the goal”, it is quite
reasonable to assume this property

e Note that if & is monotone, and all costs are non-zero, then f cannot
decrease along any path:

f(s) = g(s) + h(s) < g(s) + c(s,8") + h(s") = f(5)

COMP-424, Lecture 3 - January 14, 2013 18




Is A* complete?

Suppose that h is monotone = f is non-decreasing

Note that in this case, a node cannot be re-expanded

If a solution exists, it must have bounded cost

Hence A* will have to find it! So it is complete

COMP-424, Lecture 3 - January 14, 2013 19

Dealing with inconsistent heuristics

g=5, h=4, f=9

1
@ 2’=6,h’=2, =8

e Make a small change to A*: instead of f(s') = g(s’) + h(s’), use
f(s') = max(g(s') + h(s'), f(s))

e With this change, f is non-decreasing along any path, and the previous
argument applies

COMP-424, Lecture 3 - January 14, 2013 20




Is A* search optimal?

e Suppose some suboptimal node containing a goal state has been
generated and is in the queue (call this node Gs).

e Let n be an unexpanded node on a shortest optimal path, and call the
end point of this path node G;.

e We have:

f(G2) 9(Gs) since h(G2) =0

9(Gh) since GG is suboptimal

\YARY;
=
2

since h is admissible

e Since f(G2) > f(n), A* will select n for expansion before G

e Since n was chosen arbitrarily, all nodes on the optimal path will be
chosen before G5, so GG; will be reached before G5

COMP-424, Lecture 3 - January 14, 2013 21

Dominance

e If ha(n) > hy(n) for all n (both admissible) then ho dominates hq
e A* using hy will expand all nodes expanded when using ho, and more

e Eight-puzzle typical search example:

d=14 IDS = 3,473,941 nodes
A*(h1) = 539 nodes
A*(hg) = 113 nodes

d =24 IDS = too many nodes
A*(h1) = 39,135 nodes
A*(ha) = 1,641 nodes

COMP-424, Lecture 3 - January 14, 2013 22




Properties of A*

Complete!

Optimal!

Exponential worst-case time and space complexity (why?)

— But with a perfect heuristic, the complexity is O(bd), because we
would only expand the nodes along the optimal path
— With a good heuristic complexity is often sub-exponential

Optimally efficient: with a given h, no other search algorithm will be
able to expand fewer nodes

COMP-424, Lecture 3 - January 14, 2013 23

Iterative Deepening A* (I DA*)

e Same trick as we used in last lecture to avoid memory problems

e The algorithm is basically depth-first search, but using the f-value to
decide in which order to consider the descendents of a node

e There is an f-value limit, rather than a depth limit, and we expand all
nodes up to fi, fo,...

e Additionally, we keep track of the next limit to consider (so we will search
at least one more node next time)

e I DA* has the same properties as A* but uses less memory

e In order to avoid expanding new nodes always, old ones can be
remembered, if memory permits (a version know as SM A*)

COMP-424, Lecture 3 - January 14, 2013 24




Iterative deepening example:
.

h=6 (B)h=3
2

h=2

7
(G 6

e Set fj =4 — only S, B are searched (no other nodes are put in the
queue, because they exceed the cutoff threshold)

e Set fo =8 — now S, A, B, C, G are all searched

COMP-424, Lecture 3 - January 14, 2013 25

Real-Time Search

e In dynamic environments, agents have to act before they finish thinking!

e So instead of searching for a complete path to goal, we would like the
agent to do a bit of search, then move in the direction of the currently
“best” path

e Main issue: how do we avoid cycles, if we do not have enough memory
to mark states?

COMP-424, Lecture 3 - January 14, 2013 26




Real-Time A* (Korf, 1990s)

When should the algorithm backtrack to a previously visited state s?

Intuition: if the cost of backtracking to s and solving the problem from
there is better than the cost of solving from the current state

Korf's solution: do A* but with the g function equal to the cost from
the current state, rather than from the start.

— This simulates physically going back to the previous state

This is an execution-time algorithm!

COMP-424, Lecture 3 - January 14, 2013 27

How to decide the best direction?

Do we need to examine the whole frontier of a search tree to decide
what node is best?

e Not if we have a monotone f function!

First idea: bounding the search

— Look at all the nodes on the frontier, but then move one step in the
direction of the node with lowest f-value

Second idea pruning

— Maintain a variable o that has the lowest f-value of any node on the
current search horizon

— A node with cost higher than « will never get expanded

— If a node with lower f-value is discovered, « is updated

This is called a-pruning, and allows search to proceed deeper

Same idea is used in adversarial search for game playing

COMP-424, Lecture 3 - January 14, 2013 28




Search improvements

e Consider Rubik's cube: 43,252,003,274,489,856,000 states!

e How do people solve this puzzle?

COMP-424, Lecture 3 - January 14, 2013 29

Changing the search problem

e People do not think at the level of individual moves!
e Instead, there are sequences of moves, designed to achieve a certain
pattern (L-shape, fish, etc)

e Instead of choosing individual operators, you choose what subgoal you
want to achieve next

e Then solve the subgoal, and choose the next subgoal

e Often the solution to a subgoal is quite standard (e.g a fish on any corner
can be achieved in a similar way)

COMP-424, Lecture 3 - January 14, 2013 30




Abstraction and decomposition

e The key to solving complicated problems is to decompose them into
smaller parts

e Each part may be easy to solve; then we put the solutions together

e Abstraction is a term used to refer to methods that choose to ignore
information, in order to speed up computation
E.g. in Rubik's cube, we focus only on a certain aspect of the state, like
the fish, and ignore the rest of the tiles!

e Intuitively, abstraction means that we construct a smaller problem, in
which many states of the original problem are mapped to a single abstract
state

e A macro-action is a sequence of actions from the original problem (think
large jump)

— E.g. Swapping two tiles in the 8-puxxle
— E.g. Making a T in Rubik's cube

COMP-424, Lecture 3 - January 14, 2013 31

Example: Landmark navigation

e Find a path from the current location to a well-known landmark (e.g.
McGill metro)

e Find a path between landmarks (this can even be pre-computed!)

e Find a pat from last landmark to destination

COMP-424, Lecture 3 - January 14, 2013 32




Trade-offs

e By decomposing a problem and putting the solutions together, we may
be giving up optimality

e But otherwise we may not be able to solve the problem at all!

e Solutions to subgoals are often cached in a database

e When we choose subgoals, we need to be careful that the overall problem
still has a solution

— Knoblock (1990s) showed conditions under which sub-solutions can
be pieced together an completeness is preserved

COMP-424, Lecture 3 - January 14, 2013 33

Summary of informed search

e Insight: use knowledge about the problem, in the form of a heuristic.

— The heuristic is a guess for the remaining cost to the goal.
— A good heuristic can reduce the search time from exponential to
almost linear.

e Best-first search is greedy with respect to the heuristic, not complete
and not optimal

e Heuristic search is greedy with respect to f = g 4+ h, where g is the cost
so far and h is the estimated cost to go

e A* is heuristic search where h is an admissible heuristic; it is complete
and optimal

e A* is a key Al search algorithm

COMP-424, Lecture 3 - January 14, 2013 34




