
COMP322 - Introduction to C++

Lecture 09 - Inheritance continued

Dan Pomerantz

School of Computer Science

11 March 2012

Recall from last time

I Inheritance describes the creation of derived classes
from base classes.

I Derived classes inherit all data and functions from their
base classes, while certain functions such as
constructors are handled specially.

I Polymorphism is a product of the combination of virtual
functions and C++ assignment compatibility rules.

I We can create abstract types which contain “pure”
functions that may have no implementation. We can’t
actually create objects from these types, but we can
create references or pointers to abstract types.

I A key goal of inheritance: allow us to link related data
together. (e.g. Create an array of Shape*)

Basics of inheritance

I Inheritance is used to denote an is-a relationship.
I e.g. A square IS a shape.
I If we have a class Square inherit from Shape then all

functions and properites of the Shape object are
automatically added to the Square object.

I public Shape : public Square

Static dispatch

If a member function is not virtual, the choice of function to
call is made at compile time:
class A {
int f();

};

class B : public A {
int f();

};

int main() {
B b;

A *pa = &b;

pa->f(); // Calls A::f() because pa is of type ’A *’

}

This is called either “static dispatch” or “static binding”, and it
is the default behavior in C++.

Dynamic dispatch

If a member function is virtual, the choice of function to
call is made at run time:
class A {
virtual int f();

};

class B : public A {
int f();

};

int main() {
B b;

A *pa = &b;

pa->f(); // Calls B::f() because pa points to a ’B *’

}

Called either “dynamic dispatch” or “run-time binding”, this is
both more useful and less efficient than static dispatch.

Dynamic dispatch internals

I Dynamic dispatch is implemented by adding a layer of
indirection to a function call.

I Any object with dynamic dispatch contains an
automatically-generated pointer to a vtable.

I Objects of a given class generally share a vtable.
I The vtable contains the addresses of the virtual

functions.
I At runtime, the call to the function is performed by

indirecting through the vtable pointer.

Virtual functions and constructors/destructors
Calls to virtual functions in the context of the constructor or
destructor always use static dispatch.

This is different from the behavior of Java, for example.
class A {
public:
A() { cerr << "A()\n"; f(); } // Always calls A::f()!

∼A() { cerr << "∼A()\n"; g(); } // Always calls A::g()!

virtual void f() { cerr << "A::f()\n"; g(); } // Depends on context
virtual void g() { cerr << "A::g()\n"; }

};

class B : public A {
public:
virtual void g() { cerr << "B::g()\n"; }

};

int main() {
B b;

A *pa = &b;

pa->f(); // Calls A::f(), then B::g()!

}

Dynamic dispatch from base classes
The prior example hints at an important point: A base class
can invoke virtual functions in a derived class, with no
knowledge of the derived classes.
class base {
public:
virtual bool vf1(int x) = 0; // Pure virtual
void f1(int x) { // Some generic method

if (vf1(x)) {
// ...

}

}

};

class derived : public base {
public:
bool vf1(int x) {
// do something with ’x’...

return 1;
}

};

Implementing pure virtual functions
A pure virtual function can provide an implementation which
could be used by derived classes.
class A {
public:
virtual void f() = 0;

};

void A::f() {
// ...

}

class B : public A {
public:
void f();

};

void B::f() {
A::f(); // call the base class

// do more...

}

The compiler will still refuse to create an object of class A!

Multiple inheritance

Java includes the “interface” construct, which allows one to
generically specify a group of functions which must be
implemented by a derived class.

C++ accomplishes the same thing through abstract classes
and multiple inheritance.

Multiple inheritance allows a class to be derived from two or
more base classes. The derived class inherits all of the data
and functions of each base class, which clearly raises the
possibility of naming conflicts.

Java interfaces are similar to a C++ abstract class with no
data or function implementations. Both provide only the
prototypes for functions which must be implemented by the
derived class.

Multiple inheritance syntax
The syntax of multiple inheritance is straightforward. Each
base class can use private, public, or protected inheritance:
class A { // base class 1

int x;
public:
void f();

};

class B { // base class 2

int y;
public:
void g();

};

class C : public A, public B { // C inherits from A & B
int z; // Visible only within ’C’

public:
// ..

};

Class C will contain both functions and three variables.

Assignment compatibility
A derived class is assignment compatible with any base
class.
class A { // base class 1

// ...

};

class B { // base class 2

// ...

};

class C : public A, public B { // C inherits from A & B
// ...

};

int main() {
A a;

B b;

C c;

a = c; // OK

b = c; // OK

c = a; // Error

return 0;
}

Assignment compatibility with pointers
Assignment compatibility with pointers is maintained
similarly. However, the conversion to different base classes
may return different values.
class A { // base class 1

//...

};

class B { // base class 2

//...

};

class C : public A, public B { // C is derived from A, B
//...

};

int main() {
C c;

A *pa = &c;

B *pb = &c;

// In general, (int)pa != (int)pb

//...

}

Assignment compatibility with pointers

Why is this? Consider how the compiler arranges memory
for an object of class C. The data for of A, B, and C are
concatenated:

A
B
C

When we take the address of such an object, the compiler
examines the type of the expression, and returns a pointer to
the beginning of the appropriate part of the structure.

Sources of ambiguity

Multiple inheritance can introduce ambiguities and conflicts:
class A {
public:
void f();

};

class B {
public:
void f();

};

class C : public A, public B {
public:
void g() { f(); } // Which f() do I invoke?

};

This can be resolved by qualifying the call to f() as A::f(),
for example.

Diamond inheritance
An difficult situation arises when one class inherits from two
others, both of which share a base class:
class person {
string name;

public:
void getName();

};

class student : public person {
int year; // U0, U1, U2, etc..

public:
void getYear();

};

class employee : public person {
int year; // years of seniority

public:
void getYear();

};

class studentemployee : public student, public employee {
};

The diamond inheritance problem

The problem is even worse than we might imagine at first
glance. Our getYear() method is clearly ambiguous.

So is the getName() method! Our student and employee
classes both inherited from person. Internally,
C++ represents derived class as a concatenation of the base
and derived classes, so our studentemployee class
contains two copies of person:

person
student
person

employee
studentemployee

The diamond inheritance problem
If we use getName() in our studentemployee class, it could
refer to either person. This can be overcome with scope
resolution:
class studentemployee : public student, public employee {
public:
void f() {
string s = employee::getName();

}

};

Assignment compatibility is now broken:
int main() {
person p1;

studentemployee se1;

p1 = se1; // Which person does the compiler use??

}

Again, there is a workaround:
p1 = (employee) se1;

There are two solutions for diamond inheritance
I Avoid this situation at all costs!
I Use virtual inheritance:
class person {
string name;

public:
void getName();

};

class student : virtual public person {
int year; // U0, U1, U2, etc..

public:
void getYearOfStudy();

};

class employee : virtual public person {
int year; // years of seniority

public:
void getYearsOfService(); // avoid function name conflict

};

class studentemployee : public student, public employee {
};

What is virtual inheritance?

I Virtual inheritance ensures that a single copy of the
common base class is maintained in all derived classes.

I As with virtual functions and dynamic dispatch, the
compiler adds a layer of indirection to accesses to the
virtual base class.

I Virtual inheritance must be anticipated and applied
above the point where any two classes with a common
base class are joined.
class A {};
class B: virtual public A {};
class C: virtual public A {};
class D: public B, public C {};

I Rules for virtual inheritance are more complex than we
can cover here.

Advanced type casting
The complexity of C++ inheritance has inspired a number of
additional type conversion operators.

dynamic cast<type>(expression) - safely converts
pointers and references among polymorphic types, with
runtime checks.
class A { /* ... */ };
class B { /* ... */ };
class C: public A, public B { /* ... */ };

int main() {
A *pa1 = new A;
A *pa2 = new C;
B *pb;

C *pc;

pc = dynamic_cast <C *>(pa1); // Returns NULL
pc = dynamic_cast <C *>(pa2); // OK
pb = dynamic_cast <B *>(pa2); // OK

}

Advanced type casting

static cast<type>(expression) - converts among related
classes with static checks. Unlike dynamic cast, it cannot
consider the runtime type, it only considers the compile time
type.
int main() {
A *pa1 = new A;
A *pa2 = new C;
B *pb;

C *pc;

pc = static_cast <C *>(pa1); // OK, but dangerous
pc = static_cast <C *>(pa2); // OK
pb = static_cast <B *>(pc); // OK

pb = static_cast <B *>(pa2); // Compiler error
}

Advanced type casting

reinterpret cast<type>(expression) - converts among
any pointer types, with no checks or adjustments. This can
lead to extremely dangerous situations, as we can convert
among completely unrelated types!
int main() {
A *pa1 = new A;
B *pb;

C *pc;

pc = reinterpret_cast <C *>(pa1); // Legal but dangerous
pb = reinterpret_cast <B *>(pa1); // Legal but dangerous

}

A few non-original comments

When designing class ’C’, given class ’B’, consider which of
the following relationships applies:

I ’C’ is a ’B’ - if it makes sense to think of class ’C’ as a
specialization of ’B’, then ’C’ can be implemented as a
derived class of ’B’.

I In a course system, a ’Student’ or ’Professor’ is a
specialization of ’Person’

I ’C’ has a ’B’ - on the other hand, ’C’ may naturally
contain a ’B’, but they aren’t the same kind of thing.

I A ’Person’ probably has a ’Address’.
I ’C’ is implemented as ’B’ - ’C’ relies on the services of

’B’ in an inessential way. This is one case where private
inheritance makes sense.

I A stack ’C’ may be implemented as a linked list ’B’.

