
COMP322 - Introduction to C++

Lecture 08 - Review of Classes plus
OOP and Inheritance

Dan Pomerantz

School of Computer Science

5 March 2012

Why classes?

A class can be thought of as an abstract data type, from
which we can create any number of objects.

A class in C++ allows us to do several useful things:

I Associate both code and data with an abstract data type.
I Hide implementation details from clients.
I Inherit functionality from one or more base (ancestor)

classes, creating a class hierarchy.

We’ve already mentioned objects of stream and vector/list
classes, as they are fundamental to doing anything useful in
C++.

Declaring simple class

Here is the declaration of a very simple class for complex
numbers, as might be found in a header file:
class fcomplex {
public:
fcomplex(); // Default constructor

fcomplex(float r, float i); // Full constructor

fcomplex add(const fcomplex &y);
fcomplex sub(const fcomplex &y);
fcomplex mul(const fcomplex &y);
fcomplex div(const fcomplex &y);
static float abs(const fcomplex &x);

float realpart() const;
float imagpart() const;

private:
float real; // Real part
float imag; // Imaginary part

};

Declaring simple class
Here is the declaration of a very simple class for complex
numbers, as might be found in a header file:

Each declaration defines a method which will operate ON a
particular element.

In the same way that we could write:
vector<int> foo;
foo.push_back(3);

and call the method push back to add the element 3 to the
vector foo, we will now be able to call the method add ON an
fcomplex number, writing something like: (if number1,
number2, and number 3 are all variables of type fcomplex)

fcomplex number3 = number1.add(number2);

Sometimes we will define our methods to change the existing
object, other times to create a new one.

Implementing a simple class
Now let’s implement some of these member functions:
fcomplex::fcomplex() { // Default constructor

real = imag = 0.0;

}

fcomplex::fcomplex(float r, float i) {
real = r;

imag = i;

}

float fcomplex::realpart() const {
return real;

}

fcomplex fcomplex::add(const fcomplex &y) {
return fcomplex(real + y.real, imag + y.imag);

}

fcomplex fcomplex::mul(const fcomplex &y) {
return fcomplex(real * y.real - imag * y.imag,

real * y.imag + imag * y.real);

}

Using our simple class

We can use the class as follows:
#include <iostream >
using namespace std;

int main() {
fcomplex a(1.0, 2.0);

fcomplex b(2.0, 1.0);

fcomplex c;

c = a.mul(b);

cout << c.realpart() << " + " << c.imagpart() << "i" << endl;

}

This code will print:

0 + 5i

Constructors

Each class can define one or more constructors. These are
special functions which have the same name as the class,
and have no defined return type.

The appropriate constructor is called automatically when an
object is created.

The default constructor is the constructor with no arguments.
It simply fills in a “reasonable” set of values.

In our example main() function, the declaration
fcomplex a(1.0, 2.0);

invokes the “full” constructor, while the declaration
fcomplex c;

invokes the default constructor.

Constructors with new

In cases that you wish to use a pointer, you can also use the
new operator with the constructor:
fcomplex* a = new fcomplex(1.0,2.0);

Remember to delete a then!

Granting or denying access
We use the keywords public, private, and protected to
specify how a member function or data object may be
accessed:

I public - Globally visible.
I private - Visible only to other members of this very

class.
I protected - Visible to this class and all of its

descendants.

These restrictions can apply to any function or data member.

In our main() function we cannot access private members:
int main() {
fcomplex a(1.0, 2.0);

// ...

a.imag = 1.0; // Error! Not a public member.

}

Member functions

Unless specified otherwise, a member function is invoked by
dereferencing a specific object:
c = a.mul(b);

The object through which we invoke the member function is
an implicit parameter to the function. It may be accessed
simply by using a member name:
fcomplex fcomplex::mul(const fcomplex &y) {
return fcomplex(real * y.real - imag * y.imag,

real * y.imag + imag * y.real);

}

Destructors
A destructor is another “special” member function. The class
destructor is called when an object of a given class is
deleted. This gives an opportunity for the class to free
memory or other resources.

The destructor always has the name ∼ 〈classname〉:
class intStack {
int top;
int max;
int *data;

intStack(int max = 100) { // Constructor

Stack::max = max;

data = new int[max];
}

@\sim@intStack() { // Destructor

delete [] data;
}

int pop();
void push(int);

};

What is inheritance?

I We’ve looked at classes in C++, which allow us to create
abstract types with separate public declarations and
private implementations.

I Inheritance refers to our ability to create a hierarchy of
classes, in which derived classes (subclass)
automatically incorporate functionality from their base
classes (superclass).

I A derived class inherits all of the data and methods from
its base class.

I A derived class may override one or more of the
inherited methods.

I Most of the utility of classes and objects comes from the
creation of class hierarchies.

Inheritance syntax
class A { // base class

private:
int x; // Visible only within ’A’

protected:
int y; // Visible to derived classes

public:
int z; // Visible globally

A(); // Constructor

∼A(); // Destructor

void f(); // Example method

};

class B : public A { // B is derived from A
private:
int w; // Visible only within ’B’

public:
B(); // Constructor

∼B(); // Destructor

void g() {
w = z + y; // OK

f(); // OK

w = x + 1; // Error - ’x’ is private to ’A’

}

};

Public inheritance

I The use of the public keyword is the norm although in
some rare circumstances you will use private or
protected.

I If you omit the public keyword, inheritance is private.

class A {
public: void f();
};

class B: A { // B inherits A privately
public: void g();
};

int main() {
A a;

B b;

a.f(); // OK

b.g(); // OK

b.f(); // Illegal

}

Overriding member functions
A derived class may override a function from its base class:
class A {
public:
void f(int x) { cerr << "A::f(" << x << ")\n"; }

};

class B: public A {
public:
void f(int x) { cerr << "B::f(" << x << ")\n"; }

};

int main() {
A a;

B b;

a.f(1);

b.f(2);

}

the main() program will print:
A::f(1)

B::f(2)

Calling the base class

Overridden functions do not automatically invoke the base
class implementation. We have to do this explicitly:
class B: public A {
public:
void f(int x) {
A::f(x); // Call the base class

cerr << "B::f(" << x << ")\n";

}

};

the prior main() would now print:
A::f(1)

A::f(2)

B::f(2)

Because of multiple inheritance, C++ does not offer the Java
super() construct.

Inheritance and constructors

I Special provisions are made for inheritance of
constructors and destructors.

I Constructors are inherited, and the constructors of base
classes are automatically invoked before the constructor
of the derived class.

I The same is true of destructors.
I This is not true of other methods, they are not invoked

automatically from overridden functions.

Inheritance and constructors

class A {
public:
A() { cerr << "A()\n"; }

∼A() { cerr << "∼A()\n"; }

void f() { cerr << "A::f()\n"; } // Not special
};

class B: public A {
public:
B() { cerr << "B()\n"; }

∼B() { cerr << "∼B()\n"; }

void f() { cerr << "B::f()\n"; }
};

int main() {
A a;

a.f();

B b;

b.f();

}

Inheritance and constructors

This program:
int main() {
A a;

a.f();

B b;

b.f();

}

produces this output:
A()

A::f()

A()

B()

B::f()

∼B()

∼A()

∼A()

Explicitly invoking the base constructor
The base class’s default constructor is automatically used:
class A {
public:
A() { cerr << "A()\n"; }

A(int x) { cerr << "A()(" << x << ")\n"; }
∼A() { cerr << "∼A()\n"; }

};

class B: public A {
public:
B(int x=2) { cerr << "B(" << x << ")\n"; }
∼B() { cerr << "∼B()\n"; }

};

int main() {
B b(3);

}

produces this output:
A()

B(3)

∼B()

∼A()

Explicitly invoking the base constructor
We can explicitly invoke a non-default constructor:
class A {
public:
A() { cerr << "A()\n"; }

A(int x) { cerr << "A()(" << x << ")\n"; }
∼A() { cerr << "∼A()\n"; }

};

class B: public A {
public:
B(int x=2) : A(x) { cerr << "B(" << x << ")\n"; }
∼B() { cerr << "∼B()\n"; }

};

int main() {
B b(3);

}

produces this output:
A(3)

B(3)

∼B()

∼A()

A simple class hierarchy

I A classic example is a class hierarchy based on shapes.
I This might be useful in a graphics library.
I The root of the class hierarchy is very simple:
class shape {
public:
shape(); // Constructor

∼shape(); // Destructor

double perimeter() const { return 0; }
double area() const { return 0; }

};

A simple example - derived classes
class polygon : public shape {
protected:
int nsides; // Number of sides

double *lengths; // Lengths of each side
public:
polygon(double width=1.0, double height=1.0);
polygon(int n, double *len);
∼polygon() { delete [] lengths; }
double perimeter() const { // Override base class
double p = 0.0;
for (int i = 0; i < nsides; i++) p += lengths[i];
return (p);

}

};

class rectangle: public polygon {
// Constructor just calls the base class

rectangle(double width, double length)
: polygon(width, length) { }

// Override base class

double area() const { return lengths[0] * lengths[1]; }
}

A simple example - derived classes
class ellipse: public shape {
protected:
double semimajor , semiminor;

public:
ellipse(double smj=1.0, double smn=1.0) {
semimajor = smj;

semiminor = smn;

}

double area() const {
return PI * semimajor * semiminor;

}

};

class circle : public ellipse {
public:
circle(double r=1.0) : ellipse(r, r) { }
// Don’t override area(), but provide perimeter()

double perimeter() const {
return 2*PI*semimajor; // ‘‘semimajor’’ is protected

}

};

A simple example - derived classes

int main() {
circle c1(1);

rectangle r1(1, 1);

cout << c1.area() << " " << c1.perimeter() << endl;

cout << r1.area() << " " << r1.perimeter() << endl;

}

This program would produce the output:
3.14159 6.28319

1 4

Assignment compatibility

C++ considers objects of a derived class to be assignment
compatible with objects of their base class. This just makes a
copy, skipping members that aren’t part of the base class.
class A {
protected:
int x;

//...

};

class B: public A {
int y;

//...

};

int main() {
B b;

A a;

a = b; // OK, but ’y’ is not copied!

}

Assignment compatibility

However, we can’t to the reverse and assign an object from a
base class to a derived class. This could leave derived class
members in an undefined state.
class A {
protected:
int x;

//...

};

class B: public A {
int y;

//...

};

int main() {
B b;

A a;

b = a; // Not OK - undefined value for ’y’

}

Assignment compatibility with pointers
The same rules apply with pointers. We can assign the
address of an object of a derived class to an pointer to the
base class, but not the opposite.
class A {
// ...

};

class B: public A {
// ...

};

int main() {
A a, *pa;

B b, *pb;

pa = &b; // OK

pb = &a; // Error!

}

However, since we are assigning pointers, the objects in
these assignments are not modified, as opposed to the case
when objects are copied. They retain their full contents.

Polymorphism
The ability to use base class pointers to refer to any of
several derived objects is a key part of polymorphism.

Exploiting polymorphism requires additional effort:
class A {
public:
void f() { cerr << "A::f()" << endl; }

};

class B: public A {
public:
void f() { cerr << "B::f()" << endl; }

};

int main() {
B b;

A *pa = &b; // OK

pa->f(); // Which f() does this call?

}

This call invokes the base class, A::f()!

Virtual functions

The solution is to declare functions virtual. This causes
the compiler to call the “right” function when a call is made
through a base class pointer:
class A {
public:
virtual void f() { cerr << "A::f()" << endl; }

};

class B: public A {
public:
void f() { cerr << "B::f()" << endl; }

};

int main() {
B b;

A *pa = &b; // OK

pa->f(); // Now this will call B::f()!

}

Virtual functions
A virtual function in the derived class will override the base
class only if the type signatures match.
class A {
public:
virtual void f() { cerr << "A::f()" << endl; }

};

class B: public A {
public:
void f(int x) { cerr << "B::f()" << endl; }

};

int main() {
B b;

A *pa = &b; // OK

pa->f(); // Now this will call A::f()!

}

As with overloading, changing only the return type introduces
an ambiguity and will trigger a compile-time error.

Virtual function details

I You do not need to use the virtual keyword in the
derived classes, but it is legal.

I If you explicitly use the scope operator, you can override
the natural choice of function.
class A {
public: virtual void f() { cerr << "A::f()\n"; }
};

class B : public A {
public: virtual void f() { cerr << "B::f()\n"; }
};

int main() {
A *pa = new B();

pa->A::f(); // Explicity invokes the base class

pa->f(); // Invokes B::f()

}

Virtual constructors or destructors

I You cannot declare a constructor virtual.
I You can, and often should, declare a destructor virtual:
class A {
public:
virtual ∼A() {};

};

class B : public A {
private:
int *mem;

public:
B(int n=10) { mem = new int[n]; }
∼B() { cerr << "∼B()\n"; delete [] mem; }

};

int main() {
A *pa = new B(100);

delete pa;
}

Abstract classes

I In C++ , an abstract type or class is related to the Java
“interface” construct.

I An abstract class explicitly leaves one or more virtual
member functions unimplemented or pure.

I You can’t create an object based on an abstract class,
but you can use it to define derived classes.

I You can create pointers and references to an abstract
class.

Abstract class syntax
class A {
public:
virtual int f() = 0; // ‘‘Pure’’ (i.e. not implemented)
virtual int g() = 0;
};

class B : public A {
public:
int f() { return 1; } // Overrides f()

}

class C : public B {
public:
int g() { return 2; } // Overrides A::g()

}

Both A and B are abstract classes, and we cannot create
objects of either type. Only C is a concrete class that can be
created.

Of course, you can’t call a pure virtual function. Any attempt
to do so will probably generate a linker error.

