
COMP322 - Introduction to C++

Lecture 07 - Introduction to C++ classes

Dan Pomerantz

School of Computer Science

27 February 2012



Why classes?

A class can be thought of as an abstract data type, from
which we can create any number of objects.

A class in C++ allows us to do several useful things:

I Associate both code and data with an abstract data type.
I Hide implementation details from clients.
I Inherit functionality from one or more base (ancestor)

classes, creating a class hierarchy.

We’ve already mentioned objects of stream and vector/list
classes, as they are fundamental to doing anything useful in
C++.



Declaring simple class

Here is the declaration of a very simple class for complex
numbers, as might be found in a header file:
class fcomplex {
public:
fcomplex(); // Default constructor

fcomplex(float r, float i); // Full constructor

fcomplex add(const fcomplex &y);
fcomplex sub(const fcomplex &y);
fcomplex mul(const fcomplex &y);
fcomplex div(const fcomplex &y);
static float abs(const fcomplex &x);

float realpart() const;
float imagpart() const;

private:
float real; // Real part
float imag; // Imaginary part

};



Declaring simple class
Here is the declaration of a very simple class for complex
numbers, as might be found in a header file:

Each declaration defines a method which will operate ON a
particular element.

In the same way that we could write:
vector<int> foo;
foo.push_back(3);

and call the method push back to add the element 3 to the
vector foo, we will now be able to call the method add ON an
fcomplex number, writing something like: (if number1,
number2, and number 3 are all variables of type fcomplex)

fcomplex number3 = number1.add(number2);

Sometimes we will define our methods to change the existing
object, other times to create a new one.



Implementing a simple class
Now let’s implement some of these member functions:
fcomplex::fcomplex() { // Default constructor

real = imag = 0.0;

}

fcomplex::fcomplex(float r, float i) {
real = r;

imag = i;

}

float fcomplex::realpart() const {
return real;

}

fcomplex fcomplex::add(const fcomplex &y) {
return fcomplex(real + y.real, imag + y.imag);

}

fcomplex fcomplex::mul(const fcomplex &y) {
return fcomplex(real * y.real - imag * y.imag,

real * y.imag + imag * y.real);

}



Using our simple class

We can use the class as follows:
#include <iostream >
using namespace std;

int main() {
fcomplex a(1.0, 2.0);

fcomplex b(2.0, 1.0);

fcomplex c;

c = a.mul(b);

cout << c.realpart() << " + " << c.imagpart() << "i" << endl;

}

This code will print:

0 + 5i



Constructors

Each class can define one or more constructors. These are
special functions which have the same name as the class,
and have no defined return type.

The appropriate constructor is called automatically when an
object is created.

The default constructor is the constructor with no arguments.
It simply fills in a “reasonable” set of values.

In our example main() function, the declaration
fcomplex a(1.0, 2.0);

invokes the “full” constructor, while the declaration
fcomplex c;

invokes the default constructor.



Constructors with new

In cases that you wish to use a pointer, you can also use the
new operator with the constructor:
fcomplex* a = new fcomplex(1.0,2.0);

Remember to delete a then!



Granting or denying access
We use the keywords public, private, and protected to
specify how a member function or data object may be
accessed:

I public - Globally visible.
I private - Visible only to other members of this very

class.
I protected - Visible to this class and all of its

descendants.

These restrictions can apply to any function or data member.

In our main() function we cannot access private members:
int main() {
fcomplex a(1.0, 2.0);

// ...

a.imag = 1.0; // Error! Not a public member.

}



Member functions

Unless specified otherwise, a member function is invoked by
dereferencing a specific object:
c = a.mul(b);

The object through which we invoke the member function is
an implicit parameter to the function. It may be accessed
simply by using a member name:
fcomplex fcomplex::mul(const fcomplex &y) {
return fcomplex(real * y.real - imag * y.imag,

real * y.imag + imag * y.real);

}



The this pointer

Alternatively, we can explicitly reference the implicit
parameter using the keyword this.

In any non-static member function, this is a pointer to the
object through which the member was invoked:
fcomplex fcomplex::mul(const fcomplex &y) {
return fcomplex(this->real * y.real - this->imag * y.imag,

this->real * y.imag + this->imag * y.real);
}

It is rarely necessary to use the this pointer explicitly, but it
may occasionally help clarify the intent of your code.



Const member functions

If a member function is declared const, by placing the
keyword after the parameter list, this means the member
function will not make any changes to the implicit parameter:
class fcomplex {
// ...

float imagpart() const;
// ...

};

float fcomplex::imagpart() const {
return imag;

}

In comparison, consider a function to set the imaginary part:
void fcomplex::imagpart(float i) {
imag = i;

}



Static member functions

If a member function is declared static, it is not called
through a specific object, and the this pointer is undefined:
// from the class declaration:

static float abs(const fcomplex &x);

// Here is the actual function definition. Note that we must

// not re-use use the static modifier here:

float fcomplex::abs(const fcomplex &x) {
return sqrt(x.real * x.real + x.imag * x.imag);

}

These static functions are not invoked through a specific
object:
cout << fcomplex::abs(c) << endl;



Static data members

Unlike structure definitions, data objects in a class can also
be declared static.

This creates a single data field whose storage and value is
shared among all instances of the class.

These are the only objects in a class which may be initialized:
class Example {
private:
int data1;
string data2;

static int data3 = 5;
//...

};



Applications of static data
Here are a couple of applications for static data members:

I Parameters that are common to all class objects:
static const int N_TABLE = 100; // Fixed
static int udp_port = 1336; // Variable

I Data which is used for global accounting of resources:
class Example {
static int use_count = 0;

};

Example() {

if (use_count++ == 0) {
// Get resources

}

}

∼Example() {

if (--use_count == 0) {
// Free resources , e.g.

}

}



Default arguments

Sometimes it is useful to specify default values for function
parameters. In this way we can simplify the most commonly
used form of a function call.
void sort(int *array, bool descending = false);

We can call this function in any number of ways:
int numbers[] = { 7, 9, 28, 5, 1 };
sort(numbers); // Sort in ascending order

sort(numbers, true); // Sort in descending order
sort(numbers, false);

Default arguments may be specified for any C++ function.



Destructors
A destructor is another “special” member function. The class
destructor is called when an object of a given class is
deleted. This gives an opportunity for the class to free
memory or other resources.

The destructor always has the name ∼ 〈classname〉:
class intStack {
int top;
int max;
int *data;

intStack(int max = 100) { // Constructor

Stack::max = max;

data = new int[max];
}

∼intStack() { // Destructor

delete [] data;
}

int pop();
void push(int);

};



More complex destructors
class Symtable {
private:
Symbol *head;

Symbol *find(string name) {

for (Symbol *sp = head; sp != NULL; sp = sp->link)
if (sp->name == name) return sp;

return NULL;
}

public:
Symtable() { head = NULL; } // Empty

∼Symtable() {

while (head != NULL) { // Free the list

Symbol *sp = head->link;

delete head;
head = sp;

}

}

void set(string name, int value);
int get(string name) {
Symbol *sp = find(name);

return (sp == NULL ? 0 : sp->value);
}

};



Issues with constructors
Consider the symbol table example we just gave. What
happens if we initialize a new object with an old one?
int main() {
Symtable st1;

st1.set("apple", 1);

st1.set("peach", 2);

Symtable st2 = st1; // Make a copy

cout << "apple=" << st2.get("apple") << endl;

st1.set("apple", 3);

cout << "apple=" << st2.get("apple") << endl;

}

Perhaps surprisingly, this prints:

apple=1

apple=3

By default, initialization and assignment do a naı̈ve copy.



Copy constructor
The solution to this problem is to provide a copy constructor,
which copies the entire data structure.

The most generic form of copy constructor is:
class X {
X(const X& src);
//...

};

For our symbol table example, it would be:
Symtable(const Symtable &src) {
head = NULL;

for (Symbol *sp = src.head; sp != NULL; sp = sp->link) {
Symbol *np = new Symbol;
np->name = sp->name;

np->value = sp->value;

np->link = head;

head = np;

}

}



Inefficiencies may arise from privacy

Suppose we have two classes, matrix and vector, with
private data and public accessor functions:
vector multiply(matrix& m, vector& v)

{

vector r;

for (int i=0; i < m.rows(); i++) {
r.elem(i) = 0;

for (int j=0; j < m.cols(); j++) {
r.elem(i) += m.elem(i,j) * v.elem(j);

}

}

return r;
}

All these function calls may be inefficient.



Friend functions
The friend keyword can be used to alter the normal rules
about the visibility of class members.

We add this line to both the matrix and vector classes:
class vector {
//...

friend vector multiply(matrix &, vector &);
};

our function can now be written more efficiently:
vector multiply(matrix& m, vector& v)

{

vector r;

for (int i=0; i < m.n_rows; i++) {
r.data[i] = 0;

for (int j=0; j < m.n_cols; j++) {
r.data[i] += m.data[i][j] * v.data[j];

}

}

return r;
}



Friend classes

The same idea can apply to member functions or entire
classes:
class X {
//...

void f();
};

class Y() {
//...

friend void X::f(); // Grant X::f() access to Y
};

class Z() {
//...

friend class X; // Grant all of X access to Z

};



Dealing with scoping issues
A number of confusing situations can arise:
class X {
int a, b;

public:
X(int a, int b) {
// how can I refer to the class members rather

// than the parameters?

X::a = a; // One option

this->b = b; // Another option
}

A common convention is to apply some prefix to all private
data members:
class X {
int m_a, m_b;

public:
X(int a, int b) {
// no confusion now

}

};



Dealing with scoping issues

Another situation arises when we wish to refer to a global
object from within a class:
class vector {
double *data;
int length;

public:
//...

void pow(double y) {
for (int i = 0; i < length; i++)
data[i] = ::pow(data[i], x);

}

}

Here we use the “unary” form of the scope resolution
operator, which means “use the global version of pow”.



Nesting classes

A class can contain one or more classes:
class X {
int x;
class Y {
// ...

};

class Z {
// ...

};

};

The enclosed classes are not visible outside of the scope of
the enclosing class.



Initializing class members
When a class contains objects of another class, the
constructors of the components can be called in the
constructor of the containing class.

A new syntax is necessary to allow parameters to be passed
to the constructor of objects allocated within the structure.
class matrix {
public:
matrix(int rows, int cols) {
// ...

}

};

class something {
matrix m1;

matrix m2;

public:
something(int n, int m)
: m1(n, m), m2(n, m) {

// initialize other members of something

}

};


