
COMP322 - Introduction to C++

Lecture 03 - Pointers and references

Dan Pomerantz

School of Computer Science

20 January 2012

The struct (from last class)

A C++ struct contains a list of objects, like a database
record.

struct Point2D {

double x;

double y;

};

Point2D origin;

We can then access the elements using the ’.’ operator:

origin.x = 0;

origin.y = 0;

Pointers

A pointer in C++ holds the address of another object.

We can declare pointers as follows:

int *p, *q; // p and q are pointers to base type ’int ’

Generally, this syntax is a little confusing. I find it more
natural to read:

int* p;

This now reads that the type of p is a pointer. (Careful
though that int* p,q declares one int pointer and one int)

Inverse operators
In C++, for any type, one can work with either addresses OR
“data.” (In quotes because sometimes an address could be
data still.)

There are two operators which are very useful to know:

I Unary ’*’: Dereference operator : Converts addresses to
data
int y = *p; // Set ’y’ equal to the int stored at ’p’

I Unary ’&’: “Address-of” operator : Converts data to
addresses
int x;

int *p = &x; // Set ’p’ equal to the address of ’x’

These operators are inverses of each other.

The standard library defines NULL as an illegal pointer value. It
generally has the same bit pattern as zero.

Pointer arithmetic

Pointer operations are extremely powerful. Almost any object
can have its address taken, and be assigned to a pointer.

In addition, we can do math on pointers in restricted ways:

I pointer = pointer + integer : Add an integer to a pointer,
the result is a pointer.

I pointer = pointer − integer : Subtract an integer from a
pointer, the result is a pointer.

I integer = pointer − pointer : Subtract two pointers to get
the integral number of elements between them. Pointers
must be of the same base type, and should point to the
same vector.

I Pointer comparison using >,<,>=,<=,!=,==

Pointers and arrays

In C++, pointer and array expressions are often equivalent:

int vec [10];

int *p = &vec [0]; // Points to the first element

int *q = &vec [10]; // Points past the last element

int *r = p+10; // Identical to prior initialization

int x = vec [1]; // Get value of second element

int y = *(p+1); // Ditto

int n = 1;

p = p + n; // p == &vec [1]

q = q - 1; // q == &vec [9]

x = *--r; // r == &vec [9] and x == vec [9]

y = *p++; // p == &vec [2] and y == vec [1]

Note also that the name of an array is equivalent to a pointer
to the first element of the array:

int vec [10];

int *p = vec; // Legal , p == &vec [0]

Pointers as function arguments

We can modify function arguments by passing a pointer rather
than the value.

void swap1(int a, int b) { // Non -working

int tmp = a;

a = b;

b = tmp;

}

void swap2(int *a, int *b) { // Swap through pointers

int tmp = *a;

*a = *b;

*b = tmp;

}

int main() {

int x = 1, y = 2;

swap1(x, y); // x==1, y==2 after return

swap2(&x, &y); // x==2, y==1 after return

}

Pointers to structs or unions

It’s often useful to pass around pointers to large objects.

struct Example {

int index;

int data [100];

char text [128];

};

Example exmpl;

// get the address of this variable and store into a pointer variable

Example *ex_p = &exmpl;

int n = (*ex_p).index;

The parentheses in the prior expression are necessary because
of the relative precendence of ’*’ and ’.’. To simplify this,
C++ defines the -> operator:

int n = ex_p ->index;

Pointers to structs continued

We can use struct pointers to defined linked lists, for example:

#include <cstdlib > // for NULL

struct LinkedList {

LinkedList *link; // Recursive use is legal here

int value;

};

LinkedList *

find_element(struct LinkedList *list , int value) {

// start at head of linked list and traverse by following links

LinkedList *ptr;

for (ptr = list; ptr != NULL; ptr = ptr ->link) {

if (value == ptr ->value)

return ptr;

}

return NULL;

}

Remember the magic value NULL which is used to indicate an
illegal pointer value.

Pointers to pointers

To add to our confusion, it is legal to have arrays of pointers,
pointers to pointers, and so on, ad infinitum.

struct Symbol {

Symbol *link; // Next in linked list

int value; // Value

char name [32]; // Text name

};

Symbol *hashtable [100]; // Open hash table

#include <iostream >

int main(int argc , char **argv) {

// argc is the number of arguments

// argv is a list of char * (string) arguments

for (int i = 0; i < argc; i++) {

std::cout << *argv++ << std::endl; // Print arguments

}

}

Pointer traps and pitfalls
Use of pointers routinely leads to a number of errors:

I Failure to initialize:
int *p;

*p = 1; // Error - ’p’ points to nothing

I Returning a pointer to a local variable:
Point *makept(int x, int y) {

Point pt;

pt.x=x;

pt.y=y;

return (&pt); // Undefined upon return!

}

To solve the above, we need to use dynamic memory
allocation via the new keyword.

I Misunderstanding pointer comparison
char *s1 = "apple";

char *s2 = "apple";

if (s1 == s2) {

// This may nor may not be true!

}

Basics of memory allocation

Any variable you create inside a method will disappear when
the method finishes (different block of code). This means that
the data at the address the variable refers to will have no
meaning:

Point *makept(int x, int y) {

Point pt;

pt.x=x;

pt.y=y;

return (&pt); // Undefined upon return!

}

Although any variable will disappear, if you create data using
the new keyword, the data will remain. So the address will still
be valid.

Basics of memory allocation

Any variable you create inside a method will disappear when
the method finishes (different block of code). This means that
the address will have no meaning:

Point *makept(int x, int y) {

// Create a point DYNAMICALLY . Store a pointer to it

Point* pt = new Point;

// Now that we have a pointer we need to dereference it

//to set its value

(*pt).x = x; //or equivalently pt ->x = x;

pt->y=y;

return pt; // still defined now!

}

Any data you create using new must be deleted using the
delete keyword or else you will have a memory leak. This
gets tricky and we’ll spend a lot of next week discussing this.

References

C++ supports the creation of references to other data objects.
These references are essentially an alias for the named object.

int x; // Declare x

int & y = x; // y is a reference to x

x = 1;

y = 2;

cout << x << endl;

// this will print 2 rather than 1

The definition of a reference must be initialized:

int x;

int & y; // Error!

A reference cannot be reassigned to a new object, and must
have the same type as its associated object. And we cannot
define a reference to a reference!

References as function parameters

The real utility of references occurs as an alternative method
for function parameter passing.

void swap1(int a, int b) { // Non -working

int tmp = a;

a = b;

b = tmp;

}

void swap3(int &a, int &b) { // Does the right thing

int tmp = a;

a = b;

b = tmp;

}

int main() {

int x = 1, y = 2;

swap1(x, y); // x==1, y==2 after return

swap3(x, y); // x==2, y==1 after return

}

This swap looks more natural than the pointer version.

Reference parameters and efficiency

In traditional call by value, a complete copy of a data object is
made. This may be inefficient when dealing with large objects.

struct Example {

int value [100];

char text [1024];

};

int get_vn1(Example ex , int n) { // Slow ...

return ex.value[n];

}

int get_vn2(const Example &ex , int n) { // Fast !!

return ex.value[n];

}

Use of the const keyword prevents the function from
modifying the contents of the structure.

Reference details
A reference parameter must be bound to a object of the same
type, and the object must be an lvalue
void swap1(int a, int b) { // Non -working

int tmp = a;

a = b;

b = tmp;

}

void swap3(int &a, int &b) {

int tmp = a;

a = b;

b = tmp;

}

int main() {

int a=1, b=2, vec [10];

float c=3;

swap1(a,b+1); // Legal but no effect

swap3(a,b+1); // Error , ’b+1’ is not an lvalue

swap3(vec[1], vec [2]); // OK

swap1(a,c); // Legal but useless

swap3(a,c); // Error!

}

But what is an lvalue?
In C++, an lvalue is an expression that yields a result at which
another value can be stored.

Lvalues include variables, struct fields, and array or pointer
derefererences.

int x, array [10], *intptr = &x;

struct point {

unsigned int x, y;

} pt;

// These are all legal as the lhs is an lvalue

x = 1;

pt.x = 2;

array [1] = 3;

*intptr = 4;

*(array+x) = 5;

x+1 = 1; // Not an lvalue

pt.x/2 = 2; // Not an lvalue

array = 3; // Not an lvalue

func() = 4; // Not usually an lvalue

References as return values

You can also return a reference from a function. This is useful
in two situations:

I To return a large object without copying it

I To return an lvalue

struct Symbol {

double value;

char name [32];

} symtable [100];

int symnext = 0;

Symbol & alloc_sym(const char name[], double v) {

Symbol *psym = &symtable[symnext ++];

strcpy(psym ->name , name);

psym ->value = v;

return *psym;

}

References as return values

You can also return a reference from a function. This is useful
in two situations:

I To return a large object without copying it

I To return an lvalue

struct Point {

int x,y;

};

int & ptx(struct Point &pt) {

return pt.x;

}

int main() {

Point p;

ptx(p) = 10; // ptx(p) is an lvalue here!

}

