
COMP322 - Introduction to C++

Lecture 11 - Templates and defining our
own iterators

Dan Pomerantz

School of Computer Science

26 March 2012

Announcements

I Assignment four posted. Due final day of classes.
I Quiz 2 next week (possibly full period possibly not)
I No class week after (cancelled due to Easter Monday

and McGill being closed).

Defining our own iterators.

I Suppose we have defined a type that stores a bunch of
data using a more complex type than simply one vector.

I Or suppose we have a vector but we want to iterate over
it in an unusual order, or skip certain values.

I We want to be able to use the algorithms defined in
algorithms.h to work with our data.

I All of these algorithms require iterators passed as input.
I So we need to be able to define an iterator to our

collection.

Those weird types......

I Remember the following code?
for (vector<int>::iterator current = v.begin();

current != v.end();

current++)

I vector<int>::iterator is the type of the iterator.
I It is a specialized type that has operators such as == , =

, !=, ++, * defined on it.
I In the case of a vector, we are given a type that has + as

well as -- and - defined on it.
I Recall that which operations are and aren’t defined on

an iterator type determines whether we call it a forward,
backwards, random access, read only, write only iterator.

Defining an iterator type

I If we want our class to be usable with the algorithms in
algorithms.h, we need to define an iterator type that
works on it.

I Suppose we have a class that stores a vector<int>.
We want to define three iterators: One which traverses
over ALL values, one which traverses just the positive
values, and one which traverses the negative values.

I For traversing over ALL values, it is easy: we can just
call the vector begin() and end()

I But for traversing over positive/negative we need to
define our own iterator.

What operations should we support?

I We need to determine what kind of iterator we should
support.

I Good rule of thumb: Don’t provide more features than is
necessary AND fast.

I For example: random access is SLOW in this case
because we need to move an arbitrary amount of steps.
This means that sort would be very slow.

I Remember that sort is a O(nlog(n)) method to begin
with. But that assumes random access.

I In our case, addition means finding n positive or
negative values past the current place.

I This takes O(n) time possibly, meaning sorting actually
takes O(n2log(n))

Defining ++

I Defining ++ (or --) does not have this problem.
I Someone will use it to traverse over the entire container

one at a time.
I They expect this would be linear with respect to the total

number of elements.

Defining our new type

I We define a new type PosOrNegVectorIterator
I This type will have defined on it all operations necessary

to traverse a Vector by choosing the right values.
I What does this type need to store to do it’s

computations.

Storage for our type:

I Our type needs to store three things:
I A current iterator for the spot of the Vector we are

currently at.
I An end iterator (one past the end) for the Vector we are

traversing.
I A bool representing whether the
PosOrNegVectorIterator should choose all positive
or all negative values. If we wanted to make this iterator
more general, we could take as input a boolean function
pointer or an object (like the algorithm functions do)
which specified the selection mechanism.

Start of our type

I Our type needs to store three things:
I A current iterator for the spot of the Vector we are

currently at.
I An end iterator (one past the end) for the Vector we are

traversing.
I A bool representing whether the
PosOrNegVectorIterator should choose all positive
or all negative values. If we wanted to make this iterator
more general, we could take as input a boolean function
pointer or an object (like the algorithm functions do)
which specified the selection mechanism.

Start of our type

class PosOrNegVectorIterator
{

private :
vector<int>::iterator current;
vector<int>::iterator end;
bool isPositive;

};

Initializing our iterator type

I Next we need to add a constructor. The constructor
should take as input these three things:
PosOrNegVectorIterator(vector<int>::iterator start,

vector<int>::iterator endV, bool positive)
{

current = start;

end = endV;

isPositive = positive;

}

I This will allow us to do something like
PosOrNegVectorIterator positive(v.begin(),

v.end(), true) inside a method such as
positiveBegin() in our class

Overloading operators

I Next we need to overload the necessary operators. For
starters, let’s overload the assignment operator.
PosOrNegVectorIterator& operator=(const

PosOrNegVectorIterator& other)

{

current = other.current;

end = other.end;

isPositive = other.isPositive;

}

I This will allow us to do something like
PosOrNegVectorIterator current =

collection.positiveBegin()

Overloading operators

I == and != are fairly straightforward to do although the
syntax is a bit messy. What about ++. Note that there
are actually two ++ (pre and post fix)
PosOrNegVectorIterator& operator++()
//same header except put operator++(int) for post-fix

{

current++;

int factor = isPositive ? 1 : -1;
while ((*current) * factor < 0 && current != end)
{

current++;

}

return *this;
}

I This will allow us to update our iterator.

Dereference operator

I Another operator we need to define is the * operator.
This is actually surprisingly easy.
int& operator*()

{

return(*current);
}

I This will allow us to update our iterator.

Using this new type

I To use this new type now, we need to write a
positiveBegin and negativeBegin method inside our
class. Suppose our vector of data is called data
PosOrNegIterator positiveBegin() {

return PosOrNegIterator(data.begin(), data.end(), true);
}

PosOrNegIterator positiveEnd() {

//think of what the value of the iterator would be when we

//reach the end.

return PosOrNegIterator(data.end(), data.end(), true);
}

Good exercise

I Define a vector class yourself as if it weren’t present.
I You’ll need to write methods such as push back,
begin(), and end() which involves defining your own
iterator type.

I You’ll also need to be able to make your type take as
“input” any other type. Which brings us to.....

C++ and abstraction

I Ideally, we want to express any non-trivial concept
exactly once.

I But consider a simple stack class:
class Stack {
private:
float *storage;

int max;
int top;

public:
float pop();

void push(float);
};

I Our interface specifies the data type stored in the stack.
I What happens when we want a stack of ints? Or

pointers? Or some other object?

C++ and abstraction

I The same idea might apply to algorithms that are not
naturally part of a class, such as a generic sorting
function.

I What we’d like is a way to express the idea of an
algorithm or data structure independently from the
specific type it is to use.

I We could view the type of the stored object as one of
the parameters of the function or class, and
automatically apply the code for each case.

I This is exactly what C++ templates do!

Class templates

I Templates can apply to classes or functions.
I We saw in assignment two how this was applied to

functions. (Could use multiple kinds of iterators)
I We can use templates to declare our stack class:
template <class T> class Stack {
private:
T *storage;

int max;
int top;
public:
Stack(int n = 100);
∼Stack();

T pop();

void push(T);
};

Using a templated class

I We can use the template to create a stack of string
objects:
int main() {
Stack<string> sstack;

sstack.push("world");

sstack.push("hello");

cout << sstack.pop(); // Print hello

}

Defining template members
I It’s easiest to define member functions in the class:
template <class T> class Stack {
private:
T *storage;

int max;
int top;
public:
Stack(int n = 100) {
storage = new T[n];
max = n;

top = -1;

}

∼Stack() {

delete [] storage;
}

T pop() {

if (top >= 0) {
return storage[top--];

}

}

// ...

};

Defining template members

I Alternatively, member functions can be defined outside
the class. This adds a bit of extra boilerplate to each
definition:
template <class T> Stack<T>::Stack(int n) {
storage = new T[n];
max = n;

top = -1;

}

template <class T> Stack<T>::∼Stack() {
delete [] storage;

}

template <class T> void Stack<T>::push(T v) {
if (top < max - 1) {
storage[++top] = v;

}

}

Template parameters
I While the keyword class is used, the parameter can be

any name that is defined as a type.
I Parameters may also include integer constants of

another type, or another template.
// One or more type parameters

template <class T, class U> class C { /* ... */ };
// An integer and type parameter

template <int X, class Y> class D { /* ... */ };
// A type parameter may define the type of another parameter

template <class T, T def> class E { /* ... */ };
// Pass a template as an argument

template <class B, template <class> class C> class F {
C inst1;

C<B *> inst2;

// ...

};

I Parameter names do not have to be a single letter, but
this is a common idiom.

Type equivalence
I A class template may create many distinct types:
int main() {
Stack<int> is;
Stack<float> fs;

// Stack<int> and Stack<float> are not assignment compatible!

is = fs; // Error!

}

I However, if the template arguments are effectively
identical, the types are compatible:
typedef unsigned char uchar_t;
Stack<uchar_t> us1;

Stack<unsigned char> us2;

us1 = us2; // OK!

SomeTemplate <int, 10> t1;
SomeTemplate <int, 20-10> t2;

t2 = t1; // OK, constant expressions equivalent

Class template instantiation

I Actual use of a template is sometimes refered to as
template instantiation.

I Template code for a specific set of parameters is
generated on demand:
int main() {
Stack<int> istack; // Generate code for integer stack
Stack<string> sstack; // Generate code for string stack

// ...

};

I No code is generated for unused template parameter
choices.

I This has important implications for libraries, and error
checking.

Type parameter validity

I Any type may be passed as a template parameter, but it
has to support the operations assumed by the template:
template <class B> class C {
B x;

B y;

public:
B f() { return x + y; } // Addition must be defined on 2 Bs!

};

template <class D> class E {
D x;

public:
void update(int n) {
x.g(n); // D must include a member function ‘‘g’’

}

};

I Some errors can be caught only when the template is
instantiated!

Notes about class templates

I Classes are generated from templates as requested.
I Template expansion occurs at compile time.
I Each generated class has its own copy of any static

data.

Function templates
I We can define global functions using templates as well:
template <class T> void sort(vector<T> &v) { // definition
const size_t n = v.size();
for (int gap = n / 2; 0 < gap; gap /= 2)
// ...

if (v[j+gap] < v[j]) { // swap
T temp = v[j];

v[j] = v[j+gap];

v[j+gap] = temp;

} else break;
}

I The type of the arguments determines the version that
is instantiated and called:
template <class T> void sort(vector<T> &);

void f(vector<int> &vi, vector<string> &vs) {
sort(vi); // sort(vector<int> &);

sort(vs); // sort(vector<string> &);

}

Function template arguments
I The choice of function template may be deduced from

the parameters:
template <class T, int max> T& lookup(Buffer<T, max> & b,

const char *p);

class Record {
const char v[12];
// ...

};

Record & f(Buffer<Record, 128> &buf, const char *p) {
return lookup(buf, p); // T is Record & max is 128

}

I However, if the template argument can’t be deduced, we
need to provide it explicitly:
template<class T> T *create(); // Create a T

void f() {
int *p = create<int>(); // function , template argument ’int’

}

Source code issues

I By default, the full template definition must be accessible
from any compilation unit (source file) that uses it.

I Often, this means the entire template definition is placed
in a “.h” file.

I This may expose the implementation, or require extra
information to be included during compilation.

Source code issues - export

I Alternatively, we can mark the template explicitly for
export:
// min.h

template <class T> T min(T, T);

// min.cpp

export template <class T> T min(T x, T y) {
return (x < y) ? x : y;

}

// client.cpp

#include "min.h"

// use min() as needed

I However, export is not implemented in many compilers.

Template specialization

I Each time you instantiate a templated class of a
different type, a new version is created.

I The result can get large and complicated if we have to
instantiate the template for many different types.

I Template specialization exists to minimize this.

Specialization example

I Consider a generic Vector class, which can any
number of objects of any type:
template <class T> class Vector {
T *v;

int length;
public:
Vector();

explicit Vector(int);
T & operator[](int i);
// ...

};

I We can specialize this template for a specific type:
template <> class Vector<bool> {
// code for boolean bit vectors

};

I We remove any parameters with fixed values from the
parameter list.

Typename keyword

I Historically, C++ re-uses the class keyword to declare
template parameters which may be any type.

I Arguably, this is confusing.
I More recent implementations have added the typename

keyword to address this confusion:
template <typename T> class A {
T *data;

int sz;
public:
/* ... */

}

Templates and inheritance

I Inheritance is not preserved across templates:
template <typename T> class A { /* ... */ };
class B { /* ... */ };
class C : public B { /* ... */ };

int main() {
B b;

C c;

A ab;

A<C> ac;

b = c; // legal, as B is derived from C

ab = ac; // error!

}

Deriving templates from templates

I We can derive a class template from another template.
I Normally the template parameter will be used as the

parameter of the base class:
template<class T> class A { /* ... */ };
template<class T> class B: public A<T> { /* ... */ };

I A range of situations are possible:
template <class T> class C { /* ... */ };
template <class T> class D : public C< D<T> > { /* ... */ };

I Or we could inherit from two different template classes:
template <class T> class E { /* ... */ };
template <class T> class F { /* ... */ };
template <class T, class X> class G : public E<T>, public F<X> {
};

Member templates

I A class or class template can contain templates as
members:
template <typename T> class A {
// ...

public:
template <typename X> A(X &arg);
// ...

};

I This syntax would allow us to construct an A from an
object of an arbitrary type - although presumably a type
with some well-known set of operations.

