
COMP322 - Introduction to C++

Lecture 01 - Introduction

School of Computer Science

9 January 2012

What this course is

I Crash course in C++

I Only 14 lectures

I Single-credit course

I As the lectures only take up 1 hour per

week, it will be your responsibility to read

any assigned readings.

I Course material is partly up to you

Goals of Course

I Understand basics of OOP

I Crash course in some of the tricks of C++

I Have a decent sense of what tricks are

good and what tricks are just confusing!

What this course is not

I An introduction to programming course

I A full OOP course

I A gentle tour of C and Java syntax

Prerequisites and Assumptions

I Assumes you have taken COMP206 OR

COMP 202 OR COMP 250 OR COMP

208.
I Assumes you are comfortable in C

programming language.
I If you are not comfortable in C but know

Java, it is probably OK. You will,

however, find some concepts you need to

catch up on and some concepts you

already know though.
I See me if you have any concerns.

Course facts

I Course web page:
http://www.cs.mcgill.ca/∼dpomer/322-w2012/

I Office hours: Tuesdays 10:30-11:30 (flexible depending on
necessity)

I Academic Integrity: See
http://www.mcgill.ca/integrity

Assessment

I Two short quizzes, 20% each
I Short-answer, multiple-choice, true/false
I Given in class

I Four homework assignments, 20% each
I One or more short programming problems
I 3 weeks per assignment
I 10% per day late penalty
I Use GNU C++ (“g++”)
I Comments and style will be counted, in addition to

correctness

I Final grade will be the sum of the best 5 scores, provided
the work does not violate academic integrity standards!

A little about your instructor

I Dan Pomerantz, dpomer@cs.mcgill.ca, Course
Lecturer

I Office: McConnell 306

I MSc. from McGill. Worked on recommender systems
with Greg Dudek

I http://www.recommendz.com

I Afterwards worked with Bing Shopping search engine on
extracting information from webpages.

I Hobbies: Chess, basketball, cooking

I Avid New York Rangers fan

http://www.recommendz.com

History of C++

I Begun in 1979 by Bjarne Stroustrup

I Originally called “C with Classes”

I First used outside Bell Labs in the mid-80’s

I ANSI/ISO standard (ISO/IEC 14882:1998)

I Important ancestor of Java

Design principles

I Compiles to machine (binary) code

I Compile-time type checking

I Flexible programming styles

I Low runtime overhead

I Minimal development environment

I Mostly compatible with C

Differences from C

I Classes

I Overloading

I Templates

I Exceptions

I Namespaces

Differences from Java

I Compiles to machine code

I Multiple inheritance

I Pointers and references

I Templates

I No garbage collection

Pros and cons

I Like C, C++ is useful for systems programming

I Commercially important!

I Can seem complex and difficult

I Allows serious errors and security problems

I Not quite as standard as either C or Java

I Lots of “missing features”

C++ Standard Library

I Includes most of the C Standard Library

I Derived from Standard Template Library (STL)

I Data types: Strings, complex numbers, etc.

I Containers: Lists, sets, queues, stacks, etc.

I Algorithms: Sorting and searching

C++ basics

I Statements terminated with semicolon

I Comments either between /* .. */ or after //

I Basic constants and types largely borrowed from C

I Most operators identical to those in C

I Parentheses are used to group expressions: a * (b + c)

I All identifiers must be declared before use, e.g.
int inch; float sum = 0.0;

C++ basics - Basic types

The sizes and specific range values are typical for 32-bit systems.
Type Bytes Min Max
bool 1 false true
signed char 1 SCHAR MIN (-128) SCHAR MAX (127)
unsigned char 1 0 UCHAR MAX (255)
char 1 CHAR MIN CHAR MAX
short [int] 2 SHRT MIN (-32768) SHRT MAX (32767)
unsigned short [int] 2 0 USHRT MAX (65535)
int 4 INT MIN INT MAX
unsigned [int] 4 0 UINT MAX
long [int] 4 LONG MIN LONG MAX
unsigned long [int] 4 0 ULONG MAX
float 4 -FLT MAX +FLT MAX
double 8 -DBL MAX +DBL MAX
long double 8 -LDBL MAX +LDBL MAX

C++ example - hello.cpp

#include <iostream >

int main()

{

std::cout << "Hello , world !\n";

return 0; // Return code for success

}

This text, contained in the file hello.cpp, is the canonical
trivial program, intended to print a friendly greeting.

C++ example - hello.cpp

#include <iostream >

int main()

{

std::cout << "Hello , world !\n";

return 0; // Return code for success

}

I “#include” is a preprocessor directive
I Preprocessor runs before the compiler
I The entire file “iostream” is incorporated
I No semicolon used in preprocessor statements
I Incorporates part of standard library

C++ example - hello.cpp

#include <iostream >

int main()

{

std::cout << "Hello , world !\n";

return 0; // Return code for success

}

I “main()” is a special function
I Control starts with this function
I It must be a global function returning int
I Must be defined only once per project
I Is not part of any class

C++ example - hello.cpp

#include <iostream >

int main()

{

std::cout << "Hello , world !\n";

return 0; // Return code for success

}

I std::cout refers to a global object
I It is an object of the class ostream
I It is similar to the stdout global from C
I The ’¡¡’ operator writes the object
I The ’::’ is the scope operator

C++ example - hello.cpp

#include <iostream >

int main()

{

std::cout << "Hello , world !\n";

return 0; // Return code for success

}

I return specifies value of function main()

I Takes an (optional) value
I The number zero is an integer constant
I In this case, zero indicates success
I Returns control to calling function

C++ example - Compiling and running

$ g++ -Wall -o hw hello.cpp

$./hw

Hello, world!

$

C++ basics - Arithmetic operators

Where possible, C++ will automatically convert among the
basic types.

+ // Addition and unary plus

- // Subtraction and unary negation

* // Multiplication

/ // Division

% // Integer remainder

Another important operator is the assignment operator:

= // Assignment

C++ basics - Comparison operators

The result of a comparison operator is always a value of type
’bool’:

== // equal

!= // not equal

> // greater than

< // less than

>= // greater than or equal

<= // less than or equal

C++ basics - Logical operators

The logical && and || operators use short-circuit evaluation.
They execute the right hand argument only if necessary to
determine the overall value.

&& // logical and

|| // logical or

! // logical negation

C++ basics - Bitwise operators

These operators support logical operations on bits. For
example,

int x = 0x1001 ^ 0x2001;

std::cout << std::hex << x << std::endl;

would print 3000.

& // bitwise and

| // bitwise or

^ // bitwise exclusive or

~ // bitwise complement

<< // left shift

>> // right shift

C++ basics - if statement

// Simplest form

if (response == ’y’) return true;

// Less simple

if (result > 0.0) {

x = 1.0 / result;

y += x;

}

else {

std::cout << "Division by zero!";

}

C++ basics - switch statement

int response;

std::cin >> response; // Get input

switch (response) {

case ’y’:

return true;

case ’n’:

return false;

case ’q’:

exit (0);

default:

std::cout << "I didn’t get that , sorry\n";

break;

}

C++ basics - while statement

float array [10];

int i;

i = 0;

while (i < 10) {

array[i] = 0;

i++;

}

C++ basics - for statement

Typically a shorthand for common forms of the while

statement.

float array [10];

for (int i = 0; i < 10; i++) {

array[i] = 0;

}

C++ basics - do while statement

int response;

do {

std::cin >> response;

processCommand(response)

} while (response != ’q’);

C++ basics - Identifier scope

int v = 1; // Global scope

int main()

{

int c = 5; // Local scope

// Declare ’i’ in statement scope

for (int i = 0; i < c; i++) {

// do something

}

// ’i’ is now undefined

c = c + v;

}

C++ basics - Functions
/* Calculate the mean of an array */

double mean(double data[], int n)

{

double sum = 0.0; // Initialization

if (n != 0) return 0.0;

for (int i = 0; i < n; i++)

sum += data[i];

return sum / n;

}

/* Impractical recursive factorial */

long factorial(long t)

{

if (t <= 1) return 1;

return t * factorial(t - 1);

}

Preprocessor

The C++ preprocessor is inherited from C. It runs before the
compiler, processing its directives and outputting a modified
version of the input.

#define #include

#ifdef #ifndef

#if #elif

#else #endif

#line #undef

#error #pragma

