
First Name: Last Name:

McGill ID: Section:

Faculty of Science
COMP-202A - Introduction to Computing I (Fall 2009) - All Sections

Midterm Examination

Tuesday, November 3, 2009 Examiners: Mathieu Petitpas [Sections 1 and 3]
18:30–20:30 Kamal Zellag [Section 2]

Instructions:

• DO NOT TURN THIS PAGE UNTIL INSTRUCTED
• This is a closed book midterm examination; notes, slides, textbooks, and other forms of documenta-

tion are not allowed.

• Non-programmable calculators are allowed (though you should not need one).

• Computers, PDAs, cell phones, and other electronic devices are not allowed.

• Answer all questions on this examination paper and return it. If you need additional space, use page
18 or the booklets supplied and clearly indicate where each question is continued. In order to receive
full marks for a question, you must show all work.

• This midterm examination has 20 pages including this cover page, and is printed on both sides of the
paper. Pages 19-20 contain information about useful classes and methods.

1 2 3 4 Subtotal

/6 /6 /4 /4 /20

5 6 Subtotal

/15 /15 /30

7 8 Subtotal

/15 /35 /50

Total

/100

1

COMP-202A - Fall 2009 - Midterm Examination Page 2

Section 1 - Short Questions

1. In one or two sentences, explain the main differences between the concepts in each of the following[6]
pairs. BE BRIEF; overly long answers will be grounds for mark deductions.

(a) An if statement and a while statement

(b) The && operator and the || operator

(c) Formal parameters and actual parameters

COMP-202A - Fall 2009 - Midterm Examination Page 3

2. What will be displayed to the screen after each of the following code fragments is executed? For full[6]
marks, describe BRIEFLY with a few words and a value what happens at intermediate steps.

(a) int a = 5;
int b = a % 2;
double c = a / 10;
double d = b + 2.5;
double e = (int)d * 3;
System.out.println("c == " + c + ", e == " + e);

(b) int[] a1 = {5, 10, 20, 0};
int[] a2 = a1;
a2[0] = 3;
boolean b = a1[1] + a1[2] == a1[0] + a1[3];
System.out.println(a1[1] + a1[2] + " == " + a1[0] + a1[3] + ": " +

b);

COMP-202A - Fall 2009 - Midterm Examination Page 4

3. The following program prints a shape to the screen using the character *. Describe what shape it is[4]
and what its dimensions are. You can also draw the program’s exact output for full marks.

public class MysteryShape {
public static void main(String[] args) {

final int SIZE = 15;
final int HALF_SIZE = SIZE / 2;
int side;

for (int i = 0; i < SIZE; i++) {
if (i <= HALF_SIZE) {

side = i;
} else {

side = SIZE - (i + 1);
}

for (int j = 0; j < SIZE; j++) {
if (HALF_SIZE - side <= j && j <= HALF_SIZE + side) {

System.out.print("*");
} else {

System.out.print(" ");
}

}
System.out.println();

}
}

}

COMP-202A - Fall 2009 - Midterm Examination Page 5

4. Consider the swap() method, declared in the following Swapper class:[4]

public class Swapper {
public static void swap(int a, int b) {

int temp;

temp = a;
a = b;
b = temp;

}

public static void main(String[] args) {
int v1 = 3;
int v2 = 4;

System.out.println("Swapping...");
swap(v1, v2);
System.out.println("v1’s new value: " + v1);
System.out.println("v2’s new value: " + v2);

}
}

The above swap() method above is intended to swap the values of the actual parameters passed to
the method. For example, suppose the swap() method works as intended, and the main() method
is executed; after the call to the swap() method, the value stored in variable v1 should be 4 (that
is, the value that was stored in variable v2 before the call to the swap() method), while the value
stored in variable v2 should be 3 (that is, the value that was stored in variable v1 before the call to
the swap() method).

Does the above swap() method work as it is intended to? That is, will it effectively swap the values
of the actual parameters? BRIEFLY explain your answer.

Total marks for Section 1: 20

COMP-202A - Fall 2009 - Midterm Examination Page 6

Section 2 - Long Questions

5. Consider the following program:[15]

public class TraceMe {
public static int trace(int[] a) {

int m, c, mc, i;

1 m = a[0];
2 c = 1;
3 mc = 1;

4 i = 1;
5 while (i < a.length) {
6 if (a[i] == a[i - 1]) {
7 c = c + 1;
8 if (c > mc) {
9 m = a[i];
10 mc = c;

}
} else {

11 c = 1;
}

12 i = i + 1;
}

13 return m;
}

public static void main(String[] args) {
14 int[] array = {2, 3, 3};

int v;

15 v = trace(array);
16 System.out.println("v: " + v);

}
}

Trace this program by writing down a list of the statements which will be executed, in the same order
as that in which the statements will be executed. Each statement must be included on your list exactly
as many times as it is executed. Use the numbers to the left of each statement to indicate which
statement is executed.

To do this correctly, write your answer using a 2-column format. For each row, the first column
contains the statement number of the statement being executed, and the second column contains the
following information, according to the type of the statement:

• If the statement is an assignment statement: the variable whose value is being changed, and its
new value.
• If the statement is a control flow construct (if or while): the value to which the boolean

expression controlling it evaluates.
• If the statement is a call to the print() or println() method: The String which is

displayed on the screen as a result of the call.

COMP-202A - Fall 2009 - Midterm Examination Page 7

• If the statement is a call to the trace() method: the word “CALL”, followed by the name of
the method, as well as each of the formal parameters this method accepts and the actual values
that are passed to each parameter for this call.
• If the statement is a return statement: the word “RETURN”, followed by the value to which

the expression following the statement evaluates.

As an example, here are the first five lines of the answer (you do not need to write these lines in your
solution):

14 array ← {2, 3, 3}
15 CALL trace(a ← {2, 3, 3})
1 m ← 2
2 c ← 1
3 mc ← 1

CONTINUE THE TRACE UNTIL THE PROGRAM TERMINATES:

COMP-202A - Fall 2009 - Midterm Examination Page 8

6. Consider the following program, saved in a file called Minimum.java:[15]

1 import java.util.Scanner;
2
3 public class Minimum {
4 public static int minimum(int[] a) {
5 int minSoFar;
6
7 minSoFar = a[0];
8 for (int i = 1; i <= a.length; i++) {
9 if (a[i] > minSoFar) {
10 minSoFar = a[i];
11 }
12 }
13 return minsoFar;
14 }
15
16 public static void main(String[] foo) {
17 Scanner keyboard = new Scanner(System.in);
18 int[] array;
19 int size;
20 int min;
21
22 System.out.print("Enter the number of values to be stored " +
23 "in the array: ");
24 size = keyboard.nextInt();
25
26 array = new int(size);
27 for (int i = 0; i < array.length; i++) {
28 System.out.print("Enter the value at position " + i + ": ");
29 array[i] = keyboard.nextInt()
30 }
31
32 min = minimum(array);
33 System.out.println("The minimum value in the array is: " + min);
34 }
35 }

The above program is designed to determine the minimum value in an array whose values are entered
by the user (the number of values in the array is intended to be equal to the size of the array, which is
also entered by the user), and display this minimum value. However, there are 5 errors in the above
program. Find all the errors and list them. For each error you list, you MUST include the number of
the line where the error occurs, the type of error (syntactic or semantic) and a description of the error.
Do not list more than 5 errors, as you will be penalized for every “error” in excess of 5 that you list.

Note that the line numbers to the left of the above program are included solely to help you make it
easier for you to list the line numbers where errors occur; they are not part of the actual program.

COMP-202A - Fall 2009 - Midterm Examination Page 9

LIST THE ERRORS YOU FIND IN THE PROGRAM HERE:

Total marks for Section 2: 30

COMP-202A - Fall 2009 - Midterm Examination Page 10

Section 3 - Programming Questions

7. Suppose that on the first day of each month, you save a fixed amount of money am in a savings account[15]
with annual interest rate ry. You can calculate the amount of money in your savings account at the
beginning of a given month using the following formula:

ai = ai−1 ·
(
1 +

rm

100

)
+ am

where

• ai is the amount of money in the account at the beginning of the current month
• ai−1 is the amount of money in the account at the beginning of the previous month
• rm is the monthly interest rate; it is equal to ry/12, where ry is the yearly interest rate
• am is the amount being deposited in the savings account each month

Note that the initial amount in the account, denoted a1, is equal to the amount being deposited in the
savings account each month (that is, am).

For example, suppose that you decide to save $100.00 each month into a savings account with a yearly
interest rate of 6% (the monthly interest rate is therefore 0.5%).

• At the beginning of the first month, you deposit $100.00 in the account.
• At the beginning of the second month, there will be $100.00 · (1 + 0.005) + $100.00 = $200.50

in the account.
• At the beginning of the third month, there will be $200.50 · (1 + 0.005) + $100.00 = $301.5025

in the account.

Write a class called SavingsCalculator, which contains only a main() method that does the
following:

• Ask the user to enter a yearly interest rate, an amount to be deposited in the saving accounts each
month, as well as a number of months, and read all these values from the keyboard. The yearly
interest rate and the amount being deposited in the savings account are real numbers, while the
number of months is an integer. Note that the user specifies the yearly interest rate as a percent;
in other words, to specify a yearly interest rate of 6%, the user will enter 6.0 or simply 6, NOT
0.06.
• Calculate the amount in the savings account after the number of months entered by the user has

passed.
• Display this value, with an appropriate explanatory message. This value does not have to be

formatted in any particular fashion; in particular, the number of significant digits displayed does
not matter.

Sample session:

Enter the yearly interest rate: 6.0
Enter the amount to be deposited each month: 100.0
Enter the number of months: 3
After 3 months, there will be $301.5025 in the savings account

Your program MAY assume that the values entered by the user are of the correct type and that they
are in the proper range; in other words, your program does not have to handle cases where a value
entered by the user is invalid in any way (such as a negative interest rate or number of months).

COMP-202A - Fall 2009 - Midterm Examination Page 11

WRITE YOUR SavingsCalculator CLASS IN THE SPACE BELOW:

COMP-202A - Fall 2009 - Midterm Examination Page 12

8. In this question, you will write parts of a program which reads lines of text from the keyboard, encrypts
these lines of text, and displays the encrypted lines.

The complete program consists of three methods:

• getPosition()
• encrypt()
• main()

The getPosition() and encrypt() method are declared in a class called Cipher, and the
main() method is declared in a class called CipherTest.

This question has three parts; in each of these parts, you will write one of the above three methods.
Note that none of the parts depend on the successful completion of any of the other parts.

Part 1:[5]

Write a public and static called getPosition(), which takes as its only parameter a char
representing an upper-case letter, and returns an int representing the position of this letter in the
English alphabet. Note that for the purposes of this question, the first letter of the alphabet has
position 0, and the positions of the other letters are adjusted accordingly; that is, the letter ’A’ has
position 0, the letter ’B’ has position 1, and so on.

You MAY assume that the char value this method accepts as parameter represents an upper-case
letter; in other words, your method does not have to handle the case where the char value this
method accepts as parameter does NOT represent an upper-case letter.

Hint: Use the properties of the character codes for each letter to avoid writing 26 if statements. This
method is actually much, much shorter than the space allocated for it suggests.

WRITE YOUR getPosition() METHOD IN THE SPACE BELOW:

COMP-202A - Fall 2009 - Midterm Examination Page 13

YOUR getPosition() METHOD CONTINUED:

COMP-202A - Fall 2009 - Midterm Examination Page 14

Part 2:[15]

A monoalphabetic substitution cipher is a simple but insecure scheme used to encrypt messages. In
such a cipher, for each possible symbol in the original message (called the plaintext), each occur-
rence of this symbol is replaced by another symbol in the encrypted message (called the ciphertext).
A special value called the key determines which ciphertext symbol replaces each possible plaintext
symbol.

Write a public and static method called encrypt(), which takes as parameters two arrays of
char, and returns an array of char. The first array this method takes as parameter represents the
plaintext, and the second array this method takes as parameter represents the key. For each character
in the plaintext, this method will generate the corresponding ciphertext character based on the key and
store this ciphertext character in a new array of char representing the ciphertext. The length of the
ciphertext will be equal to the length of the plaintext. Once every character in the plaintext has been
encrypted, the method will return the ciphertext.

This method will only encrypt characters representing letters; characters which occur in the plaintext
and which are not letters will not be encrypted, and will appear as-is in the ciphertext. To determine
which ciphertext letter corresponds to a plaintext letter, determine the position of the plaintext letter in
the alphabet, and retrieve the letter at the resulting position in the key. For example, each occurrence
of the character ’A’ in the plaintext will be replaced by the character at position 0 in the key, each
occurrence of the character ’B’ in the plaintext will be replaced by the character at position 1 in the
key, and so on. Lower-case letters occuring in the plaintext will be converted to uppercase before
being encrypted.

The ciphertext characters will be stored in the ciphertext in the same order as the corresponding
plaintext characters were stored in the plaintext. In other words, if a character is stored at position i in
the plaintext, the corresponding ciphertext character will be stored at position i in the ciphertext; this
is true of all characters in the plaintext.

For example, the plaintext:

"Hello World!"

when encrypted with the key

"BCDEFGHIJKLMNOPQRSTUVWXYZA"

will produce the following ciphertext:

"IFMMP XPSME!"

You MAY assume that the length of the array representing the key is exactly 26, and that this array
contains each upper-case letter exactly once.

You MUST call the getPosition() method you were asked to write in the previous part to cal-
culate the position of a letter in the alphabet. You MAY assume that the getPosition() method
has been implemented correctly, even if you did not successfully complete the previous part.

Hint: Use the methods of the Character class to verify whether a character represents a letter,
determine the case of a letter, or to convert a letter to its uppercase or lowercase equivalent. See the
Summary of Java Standard Library Methods at the end of this examination for more details on the
methods of the Character class.

COMP-202A - Fall 2009 - Midterm Examination Page 15

WRITE YOUR encrypt() METHOD IN THE SPACE BELOW:

COMP-202A - Fall 2009 - Midterm Examination Page 16

Part 3:[15]

Write a class called CipherTest, which contains only a main() method that does the following:

• Ask the user to enter the plaintext.
• Ask the user to enter the key; you MAY assume that the key entered by the user is 26 characters

long, and contains each upper-case letter exactly once.
• Encrypt the plaintext using the key, using the encryption scheme described in the previous part.
• Display the resulting ciphertext.
• Ask whether to encrypt another plaintext using another key. If the user answers "y", "Y",
"yes", "YES", or any other meaningful combination of these letters such as "YeS", then the
program will repeat the steps listed above, otherwise it will terminate.

You MUST call the encrypt() method you were asked to write in the previous part to encrypt
the plaintext entered by the user using the key entered by the user. You MAY assume that the
encrypt() method has been implemented correctly, even if you did not successfully complete
the previous part. Remember that the encrypt() method is declared in the Cipher class, NOT
the CipherTest class.

Hints:

• Read the plaintext and key entered by the user as Strings, and convert these Strings to
arrays of char using the toCharArray() method. You can call this method as follows:

a = s.toCharArray();

where s is the name of the String variable containing the String you want to convert, and
a is the name of a variable of type char[] in which you want to store the array resulting from
the conversion.
• You can display the contents of an array of char by passing the array variable to the print()

or println() method. For example, the statement
System.out.println(charArray);

where charArray is an array of char whose contents is {’H’, ’i’, ’!’}, will result in
the following being displayed:

Hi!

In other words, you do NOT have to display the contents of an array of char one character at a
time using a loop.

WRITE YOUR CipherTest CLASS IN THE SPACE BELOW:

COMP-202A - Fall 2009 - Midterm Examination Page 17

YOUR CipherTest CLASS CONTINUED:

Total marks for Section 3: 50

Total marks: 100

COMP-202A - Fall 2009 - Midterm Examination Page 18

USE THIS PAGE IF YOU NEED ADDITIONAL SPACE. CLEARLY INDICATE WHICH QUESTION(S)
YOU ARE ANSWERING HERE.

COMP-202A - Fall 2009 - Midterm Examination Page 19

SUMMARY OF JAVA STANDARD LIBRARY METHODS FOR SELECTED CLASSES

• String (package java.lang) Methods:

– public boolean equals(Object anObject): Compares this String to anObject.
– public boolean equalsIgnoreCase(String anotherString): Compares, ignoring case consider-

ations, this String to anotherString.
– public int compareTo(String anotherString): Compares this String to anotherString lexi-

cographically.
– public char[] toCharArray(): Converts this string to a new character array.

• Scanner (package java.util) Methods:

– public Scanner(InputStream source): Constructs a new Scanner that produces values scanned from
the specified input stream.

– public double nextDouble(): Scans the next token of the input as a double.
– public int nextInt(): Scans the next token of the input as an int.
– public String nextLine(): Advances this Scanner past the current line and returns the input read.

• PrintStream (package java.io) Methods:

– public print(boolean b): Prints boolean value b.
– public print(char c): Prints char value c.
– public print(double d): Prints double value d.
– public print(int i): Prints int value i.
– public print(Object o): Prints Object o.
– public print(String s): Prints String s.
– public println(): Terminates the current line by writing the line separator string.
– public println(boolean b): Prints boolean value b and then terminates the line.
– public println(char c): Prints char value c and then terminates the line.
– public println(double d): Prints double value d and then terminates the line.
– public println(int i): Prints int value i and then terminates the line.
– public println(Object o): Prints Object o and then terminates the line.
– public println(String s): Prints String s and then terminates the line.

• Math (package java.lang) Methods:

– public static double pow(double a, double b): Returns the value of a raised to the power of b.
– public static double sqrt(double a): Returns the correctly rounded positive square root of double

value a.
– public static double random(): Returns a double value with a positive sign, greater than or equal to
0.0 and less than 1.0.

– public static double sin(double a): Returns the trigonometric sine of angle a, where a is in radians.
– public static double cos(double a): Returns the trigonometric cosine of angle a, where a is in radi-

ans.
– public static double tan(double a): Returns the trigonometric tangent of angle a, where a is in ra-

dians.
– public static double toDegrees(double angrad): Converts angle angrad measured in radians to

an approximately equivalent angle measured in degrees.
– public static double toRadians(double angdeg): Converts angle angdeg measured in degrees

to an approximately equivalent angle measured in radians.
– public static double exp(double a): Returns Euler’s number e raised to the power of double value
a.

– public static double log(double a): Returns the natural logarithm (base e) of double value a.
– public static double log10(double a): Returns the base 10 logarithm of double value a.

COMP-202A - Fall 2009 - Midterm Examination Page 20

• Character (package java.lang) Methods:

– static boolean isLetter(char ch): Determines if character ch is a letter.
– static boolean isLowerCase(char ch): Determines if character ch is a lowercase character.
– static boolean isUpperCase(char ch): Determines if character ch is an uppercase character.
– static char toLowerCase(char ch): Converts character ch to lowercase.
– static char toUpperCase(char ch): Converts character ch to uppercase.

