
Warm up question:
-Suppose I have 2 classes : Bar and Brew-pub
The class BrewPub extends Bar
Which of the following will compile?
Bar benelux = new Bar();
BrewPub dieuDuCiel = new BrewPub();
Bar troisBroiseurs = new BrewPub();
BrewPub threeBrewers = new Pub();

Last class

-Polymorphism
-Inheritance

Interfaces

Sometimes in Java, we will have 2
classes that both share a similar
structure, but neither of them is
clearly the parent or contained in the
other.

In addition, I don't ever want to be
able to create any base class

Interfaces

Interface will be used often when
we have a concept that can be
implemented in many different
ways.

Example: Shape

There are many kinds of Shape

-Polygon
-Circle
-Concave
-Ellipse
-Quadrilateral (extends Polynomial maybe!)
-Rectangle (extends Quadrilateral maybe!)
-Square (extends Rectangle maybe!)

Every single one of these Objects would
have defined on it 2 methods:

computeArea()

computerPerimeter()

Each Object would implement these 2
methods in a different way.

Additionally, some of the Objects
may have extra attributes.

e.g. Triange may have
computeHypotenuse()

An important thing to note is that I never
want to actually create a Shape that is not
one of these more specific shapes.

i.e. I don't want to do
Shape s = new Shape();

But I do want to do
Shape s = new Rectangle();
double area = s.computeArea();

This is what interfaces will do.

When I define the Shape class, I will
not write public class Shape as
we've been doing normally. Instead I
will write:

public interface Shape {
......

}

Inside of the class, I will simply write the
method header for each attribute or
behavior that should be defined on a Shape

public interface Shape {
public double computeArea();
public double

computePerimeter();
}

By defining Shape as an interface, I make it
so that the compiler will give me an error if
I ever write

new Shape();

Implementing an interface.

To implement an interface, you just
write implements after the class:

public class Rectangle implements
Shape

(note: a class can implement more
than 1 interface—put a comma b/w)

Since the Rectangle class is implementing
the interface Shape, it must have all the
methods defined in the interface Shape

public class Rectange implements Shape {
 double width, height;

public double calculatePerimeter()
{... }
 public double calculateArea() {...}

}

Advantage of Interfaces:

The benefit of using an interface comes
from the dynamic dispatch as well.

If I know that class a and b implement c,
then that means a is-a c, and b is-a c.

This means we can store an object of type a
or b into c.

Advantage of Interfaces:

We then know that everything that
implements c MUST have the methods
outlined in c defined.

Inheritance vs Interfaces : Similarities

-both define a subtype of a parent class
-both allow you to store subtypes into
variables of the parent/base type
-both allow you to share structure between
classes
-both allow you to add additional
attributes/behaviors to the subtype

Inheritance vs Interfaces : Differences

-With an interface you can't create an
instance of the base class. The base class is
just a template.
-A class can implement more than 1
interface.

When do you use interfaces?

You will use an interface when you have
some sort of common tasks that you want
different classes to share, but they do not
necessarily perform the tasks in the same
way.

You use inheritance when one class is an
extension of another class.

Inheritance vs Interfaces : Motivations

-Typically you will use inheritance when
you have 2 (or more) similar classes and
one class is completely contained in the
other. You will also be likely to do this if
the smaller class was already implemented
and you don't want to change it.
-Interfaces will be used when the classes
with common structure do not have a clear
“parent”

Every reference type extends an Object !

-In Java, by default if you don't write
anything, it is the same as writing

“extends Object”

This means that by default, several methods
are defined for you:

for example

-toString()
-clone()

We have seen that System.out.println works
on anything. How is this possible?

The people who wrote the method
System.out.println() overloaded the
method so that it was defined on:

int, double, float, long, boolean, char, byte,
short

String

AND

Object

Now, suppose you write a class Foo

Foo by default extends the class Object

This means that it has the method

toString() defined on it.

So the people who wrote println could have
written:

public void println(Object o) {
println(o.toString());

}

What if I write the toString method in my
code?

In this case, you are overriding the
toString() method defined in Object.

By default, the toString() method just prints
the address of the reference type.

Example of interfaces: AbstractList

http://download.oracle.com/javase/1.4.2/do
cs/api/java/util/AbstractList.html

There are many different types of “Lists”

Each of them should have features such as:

add(int index, Object element)
add(Object o)
addAll(int index, Collection c)
clear()
equals(Object o)
get(int index)
.....

What about a Collection?

A Collection is also an interface. Many
classes implement this interface.

This is useful because sometimes a method
may return a list, but not an ArrayList. You
as a user don't care whether it returned an
ArrayList or a HashSet---it still is a list

Comparable interface

A very common application involves
sorting a complex class according to one of
it's fields.

For example: I may have a class Vector and
want to sort all the elements by their
magnitude

To implement that Comparable interface,
you just need to write a class with the
method

int compareTo(Object o)

defined on it.

To implement that Comparable interface,
you just need to write a class with the
method

int compareTo(Object o)

defined on it.

public class Vector {
double x, y,z;
...
public int compareTo(Object o) {

double m1 = this.computeMagnitude();
double m2 = ((Vector)o).computeMagnitude();

if (m1 < m2) return -1;
else if (m2 < m1) return 1;
else return 0;

}
}

Collections class

There is a class Collections which has the static
method sort() defined on it. You can use it by writing

Collections.sort(any list of a type that implements
comparable)

Example:2d ArrayList

-storing an ArrayList of ArrayList

-setting all the values
-adding up all the values

Example:Sorting an ArrayList using
recursion

Assignment 4: Determinant

Assignment 4: Derivative

Midterms:

-If you have questions on the midterm or
concerns, please contact me.

