
COMP-202
Inheritance and Polymorphism

Last week: Recursion

-writing a big problem in terms of a
small problem
-base cases

This week: Inheritance and
polymorphism

-Inheritance
-Interface
-Polymorphism
-Overloading vs Overriding

The point in these examples will be to
be able to share structure between
classes.

Generally, there are 2 types of
relationships classes can have in Java:

“Has-a relationships”
“Is-a relationships”

Is-a relationships vs. Has-a
relationships

So far, we have been working mainly
with “has-a” relationships. For
example:
-A HockeyTeam has two Goalies, 6
Defenseman, and 12 Fowards
-a CSTeacher has a BadJokeGenerator

Sometimes, in Java, we will want a
class relationship to represent a “Is-
A” relationship.

For example:
-Rangers is-a HockeyTeam

or

-Comp202Teacher is a CSTeacher

Motivating Example:

Suppose I have a class Apartment

An Apartment is defined as follows

public class House {
Kitchen k;
Bedroom[] bedrooms;
Closet[] closets;
Room[] otherRooms;

}

I have been using the class Apartment
in many programs, but now I realize
that I want to extend the class House
to create a class Mansion.

A Mansion “is-a” House, so it will
have all the same things, but more

public class Mansion {
//first part is same as before
Kitchen k;
Bedroom[] bedrooms;
Closet[] closets;
Room[] otherRooms;

Servant[] servants;
Amphitheatre theatre;
Gymnasium gym;
GolfCourse[] golfCourse;
SwimmingPool[] pools;

}

This approach is viable, but isn't ideal
because the two classes House and
Mansion will operate independently
of each other.

This is bad for a few reasons

1)Code reuse: We have to write the
same code again
2)Bug finding: If we find a bug in
one, we now have to remember to fix
it in the other as well
3)There is no way to link the two
classes. For example, I can't create an
array that stores both House and
Mansion

Sometimes, it is possible to completely
eliminate one class and “merge” the two.
We could do this by giving all the fields
of Mansion to House as well and them
making them null.

However, this is a bit clumsy. We just
made this class more difficult to maintain.
Plus, what if we want to make other
classes like Shack, Cottage,
HauntedHouse, or TVCharacter. We don't
want to affect our House class so much.

public class HauntedHouse {
//first part is same as before
Kitchen k;
Bedroom[] bedrooms;
Closet[] closets;
Room[] otherRooms;

Ghost g;
Skeletons[] bones;
Rats[] creepy;
Cobwebs[] cobWebs;
Dust[] dust;

}

public class House {
Kitchen k;
Bedroom[] bedrooms;
Closet[] closets;
Room[] otherRooms;
Servant[] servants;
Amphitheatre theatre;
Gymnasium gym;
GolfCourse[] golfCourse;
SwimmingPool[] pools;
Ghost g;
Skeletons[] bones;
Rats[] creepy;
Cobwebs[] cobWebs;
Dust[] dust;

}

Solution: Inheritance!

public class Mansion extends House {
Servant[] servants;
Amphitheatre theatre;
Gymnasium gym;
GolfCourse[] golfCourse;
SwimmingPool[] pools;

}

All fields and methods that were a part of
the class House are automatically now a
part of the Mansion class

Mansion m = new Mansion();

m now has all the attributes of a House
and a Mansion!

One major benefit we get right off the bat
is we don't have to write any of the
methods or attributes already defined in
House again.

private vs protected

So far, we have talked mainly about the
difference between private and public

Remember that when you omit a modifier
before an attribute or behavior in a class,
it is actually something called “package
private”

There is actually a 4th description called
protected

private vs protected

Normally, a private attribute/behavior can
only be access from inside the same class.

This is true even if you have an inherited
class.

So if I tried to access the field bedrooms
inside of the Mansion class, I would not
be able to because it is private.

protected will make it so that the
attribute/behavior is invisible to all
classes except those that are either:

a)part of the same package
b)inherited from the class

public class House {
protected Kitchen k;
protected Bedroom[] bedrooms;
protected Closet[] closets;
protected Room[] otherRooms;

}

Java coolness:

Because a Mansion is a House, you can
actually store a Mansion into a House
variable!

For example:
House h;
Mansion m = new Mansion();
h = m;
ArrayList<House> h2 = new ArrayList<House>();
h2.add(m);

Overloading a method:

In general in a class, you can overload a
method. This means that you define a
method with the same name, but a
different # of input arguments or different
types. For example:

System.out.println can take as input a

int, double, boolean, String, etc

Warm-up exercise:

What is the difference between an “is-a”
relationship and a “has-a” relationship?

For each of the following objects, write the
name of a class that could extend the class.
Write the name of a class that the class could
have
Cat
Car
Television
Stove

Warm-up exercise:

What is the difference between an “is-a”
relationship and a “has-a” relationship?

For each of the following objects, write the
name of a class that could extend the class.
Write the name of a class that the class could
have
Cat -Leg, Head, Yarn
Car -Wheel[], Engine
Television -RemoteSensor,Screen
Stove -Burner[]

Warm-up exercise:

What is the difference between an “is-a”
relationship and a “has-a” relationship?

For each of the following objects, write the
name of a class that could extend the class.
Write the name of a class that the class could
have
Cat -Siamese,
Car -RaceCar, FlyingCar
Television -PlasmaTv, BigScreenTv
Stove -GasStove, ElectricStove

Last class:

-Inheritance
-Basics of polymorphism
-Is-a relationship vs Has-a relationship
-Overloading a method vs overriding

Useful resource:

http://pages.cs.wisc.edu/~cs368-
1/JavaTutorial/NOTES/Inheritance-
intro.html

Overriding a method:

Overriding a method is when you have a
subclass---for example a class that
inherits from another class---that defines a
method with the exact same arguments
that does the behavior differently.

Recall that we had a base class of type
House and another class HauntedHouse
that extended the House class.

Now, suppose the House class has a
method talk()

public void talk() {
System.out.println(“I'm a house you

dummy. I don't know how to talk!”);
}

For a HauntedHouse, however, we want
the talk() method to perform a different
behavior.

public void talk() {
System.out.println(“BOOOO!!”);

}

House h = new House();
HauntedHouse hh = new HauntedHouse();

h.talk(); //prints the talk from House
hh.talk(); //prints the talk from Haunted

House h2 = hh;

h2.talk() ; //what do you think it prints?

Remarkably, it will print

“BOOOOO”

Java knows that even though you are using
a variable of type House, that in reality the
object there is a HauntedHouse

Exception: You can't call
attributes/behaviors that are only present in
a HauntedHouse.

For example, if we defined inside
HauntedHouse the behavior creak()

We could not say

h2.creak();

Exception: You can't call
attributes/behaviors that are only present in
a HauntedHouse.

For example, if we defined inside
HauntedHouse the behavior creak()

We could not say

h2.creak();

Java has what is known as dynamic
dispatch

What this means, is that it decides at run-
time which method to call.

However, the compiler does NOT have any
sort of dynamism. So you have to call a
method that exists on the variable of the
exact type (not subclasses)

Types and subtypes

We say that type a is a subtype of the type b
if every instance of a is-a b

For example, a HauntedHouse is-a House.

Thus HauntedHouse is a subtype of House.

Note: conceptually we could think of an int
as being a subtype of double (since an int is
a double), but in Java doesn't connect them

Converting between subtypes and
basetypes:

To go from a subtype to a base type, you
can simply assign the variable. There will
be an implicit cast done.

House h = new HauntedHouse();

//assigns a HauntedHouse to House
//which is OK since a HauntedHouse is
//a House

To go from a base type to a subtype is a bit
more complicated:

HauntedHouse hh = new House();

will not compile.

This is a bit counter-intuitive, because a
HauntedHouse has what's in a House and
more.

The trick to
remember is that
Java only stores the
address of the
element each time.

House h = new HauntedHouse()

Doing this creates an Object somewhere in
memory that stores all the fields of a
HauntedHouse. It assigns the address to h.

Because every field in a House is also in a
HauntedHouse, any compiler check that works
on a House, will also pass on a HauntedHouse.

h.something is guaranteed to be defined on the
new HauntedHouse we created

HauntedHouse hh = new House()

Doing this creates an Object somewhere in
memory that stores all the fields of a House. It
assigns the address to hh.

There are some fields in hh that are defined on a
HauntedHouse but not on a House.

Suppose Java compiler allowed this: then when
you write hh.creak(), the computer will go to the
address stored in hh and execute the behavior
“creak” which is not defined since it's a House

To go from a base type to a subtype is a bit
more complicated:

HauntedHouse hh = new House();

will not compile.

This is a bit counter-intuitive, because a
HauntedHouse has what's in a House and
more.

If you really know that you actually have a
HauntedHouse, then you can use a cast.

For example:

House h = new HauntedHouse();
// HauntedHouse hh = h;
HauntedHouse hh = (HauntedHouse) h;

However, if you don't actually have a
HauntedHouse, the cast will lead to a run-
time error:

House h = new Mansion();
HauntedHouse hh = (HauntedHouse) h;

Run time error!

If you aren't sure, you have 2 options.

1)Use a try-catch statement to check
(clumsy)
2)Add an if-statement (cleaner)

if (h instanceof HauntedHouse) {
 HauntedHouse hh = (HauntedHouse)h;
}

Calling a parent class method from an
overridden method.

Sometimes, you will want to override a
method, BUT also do the default behavior.

For example, you may want to do
everything that the original base class
method did, plus more. In this case you can
call the parent method from your
overridden method.

Keyword: super

//inside HauntedHouse

public void talk() {
super.talk();
System.out.println(“booooo!”);

}

Keyword: super in a constructor

//inside HauntedHouse

public void HauntedHouse() {
super(); //HAS to be 1st statement!
//rest of constructor

}

Useful resource:

http://www.easywayserver.com/blog/java-
multiple-inheritance-example/

Last class

-More on polymorphism
-super
-Introduction to interfaces

Interfaces

Sometimes in Java, we will have 2
classes that both share a similar
structure, but neither of them is
clearly the parent or contained in the
other.

In addition, I don't ever want to be
able to create any base class

Interfaces

Interface will be used often when
we have a concept that can be
implemented in many different
ways.

Example: Shape

There are many kinds of Shape

-Polygon
-Circle
-Concave
-Ellipse
-Quadrilateral (extends Polynomial maybe!)
-Rectangle (extends Quadrilateral maybe!)
-Square (extends Rectangle maybe!)

Every single one of these Objects would
have defined on it 2 methods:

computeArea()

computerPerimeter()

Each Object would implement these 2
methods in a different way.

Additionally, some of the Objects
may have extra attributes.

e.g. Triange may have
computeHypotenuse()

An important thing to note is that I never
want to actually create a Shape that is not
one of these more specific shapes.

i.e. I don't want to do
Shape s = new Shape();

But I do want to do
Shape s = new Rectangle();
double area = s.computeArea();

This is what interfaces will do.

When I define the Shape class, I will
not write public class Shape as
we've been doing normally. Instead I
will write:

public interface Shape {
......

}

Inside of the class, I will simply write the
method header for each attribute or
behavior that should be defined on a Shape

public interface Shape {
public double computeArea();
public double

computePerimeter();
}

By defining Shape as an interface, I make it
so that the compiler will give me an error if
I ever write

new Shape();

Implementing an interface.

To implement an interface, you just
write implements after the class:

public class Rectangle implements
Shape

(note: a class can implement more
than 1 interface—put a comma b/w)

Since the Rectangle class is implementing
the interface Shape, it must have all the
methods defined in the interface Shape

public class Rectange implements Shape {
 double width, height;

public double calculatePerimeter()
{... }
 public double calculateArea() {...}

}

Advantage of Interfaces:

The benefit of using an interface comes
from the dynamic dispatch as well.

If I know that class a and b implement c,
then that means a is-a c, and b is-a c.

This means we can store an object of type a
or b into c.

Advantage of Interfaces:

We then know that everything that
implements c MUST have the methods
outlined in c defined.

Assignment 3: HumanPlayer vs
ComputerPlayer

On assignment3, we defined an interface
Player.

All that a Player had to do was
ChooseMove(); ComputerPlayer and
HumanPlayer did so differently.

This made it easier than doing if statements

Inheritance vs Interfaces : Similarities

-both define a subtype of a parent class
-both allow you to store subtypes into
variables of the parent/base type
-both allow you to share structure between
classes
-both allow you to add additional
attributes/behaviors to the subtype

Inheritance vs Interfaces : Differences

-With an interface you can't create an
instance of the base class. The base class is
just a template.
-A class can implement more than 1
interface.

Inheritance vs Interfaces : Motivations

-Typically you will use inheritance when
you have 2 (or more) similar classes and
one class is completely contained in the
other. You will also be likely to do this if
the smaller class was already implemented
and you don't want to change it.
-Interfaces will be used when the classes
with common structure do not have a clear
“parent”

Every reference type extends an Object !

-In Java, by default if you don't write
anything, it is the same as writing

“extends Object”

This means that by default, several methods
are defined for you:

for example

-toString()
-clone()

We have seen that System.out.println works
on anything. How is this possible?

The people who wrote the method
System.out.println() overloaded the
method so that it was defined on:

int, double, float, long, boolean, char, byte,
short

String

AND

Object

Now, suppose you write a class Foo

Foo by default extends the class Object

This means that it has the method

toString() defined on it.

So the people who wrote println could have
written:

public void println(Object o) {
println(o.toString());

}

What if I write the toString method as in
Assignment 4?

In this case, you are overriding the
toString() method defined in Object.

By default, the toString() method just prints
the address of the reference type.

Example: AbstractList

http://download.oracle.com/javase/1.4.2/do
cs/api/java/util/AbstractList.html

There are many different types of “Lists”

Each of them should have features such as:

add(int index, Object element)
add(Object o)
addAll(int index, Collection c)
clear()
equals(Object o)
get(int index)
.....

What about a Collection?

A Collection is also an interface. Many
classes implement this interface.

This is useful because sometimes a method
may return a list, but not an ArrayList. You
as a user don't care whether it returned an
ArrayList or a HashSet---it still is a list

Comparable interface

A very common application involves
sorting a complex class according to one of
it's fields.

For example: I may have a class Vector and
want to sort all the elements by their
magnitude

To implement that Comparable interface,
you just need to write a class with the
method

int compareTo(Object o)

defined on it.

To implement that Comparable interface,
you just need to write a class with the
method

int compareTo(Object o)

defined on it.

public class Vector {
double x, y,z;
...
public int compareTo(Object o) {

double m1 = this.computeMagnitude();
double m2 = ((Vector)o).computeMagnitude();

if (m1 < m2) return -1;
else if (m2 < m1) return 1;
else return 0;

}
}

Collections class

There is a class Collections which has the static
method sort() defined on it. You can use it by writing

Collections.sort(any list of a type that implements
comparable)

