
Primitive vs Reference
Primitive types store values

Reference types store addresses

This is the fundamental difference 
between the 2



Why is that important?
Because a reference type stores an 
address, you can do things like create 
aliases to variables. Two variables 
could refer to the same address and thus 
access the same values.

This also allows us to make changes to 
input parameters to methods.



== with references
Whenever you use the == operator to 
compare two variables, you are always 
comparing the values stored in the 
variables.

However, because references store 
addresses, the values are actually 
addresses.

So if x and y are references, x==y is 
true only if x and y store the same 
address



== with references
This is why when comparing two Strings, 
we must use .equals() method instead.

With arrays, we must do the same thing.



Java: Passing arguments by value
In Java, any time you call a method, it 
passes the input to the method by value

This means that it evaluates the value of 
whatever expression you give and assigns the 
formal parameters of a method those values

This is true with both primitive and 
reference types. BUT with reference types 
the value is an address!



Arrays are references
Arrays are references

This means that the variables 
stores an address not a value.

Because of this, if I change the 
values stored at an address in a 
method, for example, the values 
“in” the original array also 
change



Example: Reversing the order of an 
array

Let's write a method to 
reverse the order of an 
array. The method should 
modify an existing array to 
which a reference will be 
passed.



What if I wanted to do this in a 
method?

(Bad) idea 1: Make a 
duplicate array and copy 
values into it.
public static void reverseArray(double[] a) {

   double[] tempArray = new double[a.length];

   for (int i=0; i < a.length; i++) {

         tempArray[a.length – i – 1] = a[i];

    }

   a = tempArray;

}



What if I wanted to do this in a 
method?

The problem is I never change 
that values stored at 
whatever address the variable 
a originally stores.

At the end I assign a to 
store a different address, 
but remember this is only 
changing a temporary variable 
within the method



What if I wanted to do this in a 
method?

To properly do this, I should 
change the values at the 
address originally stored by 
the variable a.

For example:



What if I wanted to do this in a 
method?

public static void reverseArray(double[] a){

   double[] temp = new double[a.length];

   //first copy into temp array in reverse      
   //order

   for (int i=0; i < a.length; i++) {

     temp[a.length -1 -i] = a[i];

   }

   //now copy back into original array

   for (int i=0; i < a.length; i++) {

      a[i] = temp[i];

   }

}



Example: Writing a method to 
delete the i^th element from an 

array of chars
For starters, we can not do this by modifying the input parameter

Why not?



Example: Writing a method to 
delete the i^th element from an 

array of chars
Idea: Make a 2nd array which has size 1 less than the original array

For every element with index 0 to i-1, copy the values into the same 
index

For every element from index i+1 to the end, copy the values into
the index one less

Return the resulting array.



Example: Writing a method to 
delete the i^th element

public static char[] deleteItem(char[] a, int i){

   char[] returnVal = new char[a.length -1];

 

   for (int j=0; j < i; j++) {

     returnVal[j] = a[j];

   }

 

  for (int j=i+1; j < a.length; j++) {

      returnVal[j-1] = a[j];

   }

   return returnVal;

}



Example: Writing a method to 
search for an element

What if we wanted to write a method to search for 
a specific element and return the first index 
where it is found?



Example: Writing a method to 
search for an element

public static int searchItem(char[] a, char 
target){ 

   for (int j=0; j < a.length; j++) {

     if (a[j] == target) {

         return j;

     }

   }

  return -1; //“code” we use for not found

 }



What if we want to delete all 
elements from an array of a certain 

value?
Idea: We have already written a method to search for an element
of a certain value

We have also written a method to delete an element at a specific
location

What we can do is write a method that does the following:
1)Search for the element to delete
2)If found, delete the first occurrence and go back to step 1
3)If not found then we have finished.

Q: Should we return the array or modify via parameters?



What if we want to delete all 
elements from an array of a certain 

value?
public char[] deleteAllMatches(char[] a, char target) {
   char[] returnVal = a;
   int i = searchItem(a, target);
   
   while (i != -1) {
       returnVal = deleteItem(returnVal, i);
       i = searchItem(a, target);
   }
   return returnVal;
}



Ex: Converting an array of chars to 
lower case.

Idea: Recall that all chars have a particular encoding. We don't need 
to know the exact values, but remember that all letters are
consecutive in the chart

Capitol letters come first. Then a few after that are the lower case 
letters.



Ex: Converting an array of chars to 
lower case.

Can we do this by modifying the original array as input argument

or do we need to return a new array?



Ex: Converting an array of chars to 
lower case.

public static void toLowerCase(char[] charArray) {
     for (int i=0; i < charArray.length; i++) {
             if (charArray[i] >= 'A' && charArray[i] <= 'Z') {
                  charArray[i] += 'a' – 'A'; //the appropriate gap
           }
     }
}



Ex: Converting a string to 
lowercase

Converting a string to lower case is similar, but not the same.

You can use the .charAt() method to get the ith element.

However, you can't set the string to a different value using the 
.charAt() method. Thus we have to return a modified string.



Ex: Converting a string to 
lowercase

public String toLowerCase(String original) {
   String returnString = “”;
   
    for (int i=0; i < original.length(); i++) {
        if (original.charAt(i) >= 'A' && original.charAt(i) <= 'Z') {
              returnString += original.charAt(i) + ('a' – 'A');
        }
        else {
              returnString += original.charAt(i);
        }
    }
}



Keeping track of variables
A good way to keep track of variables, especially with 
references, is by making a table of all the variables in memory at 
the moment. Within this table, you can draw “arrows” to 
represent the values in reference types.

Java actually does something similar!

Your table should be a list of all variables and should include the 
following information:

Variable name, Variable type, The method the variable is in, 
Variable value



public class May 31{
public static void main(String[] args) {

twoDArrays();
reviewReferenceTypes();
Examples[] examples = new 
Examples[3];

creatingYourOwnObjects();
}

}

 



An array of arrays

Since arrays are an ordered collection of elements of the same type
—and can be of any type---you can make an array of arrays.

This is known as a 2-dimensional array.



An array of arrays

To declare an array of type t, you write:

t[] name;

To initialize an array of type t, you can write:
t[] name = { list of elements of type t };



An array of arrays

So it shouldn't be surprising that to make an array of, for example, 
double arrays, we can do

double[][] doubleArray;

or 

double[][] doubleArray = { {1,2,3}, {4,5,6}, {7,8,9,10} };



An array of arrays
One often calls an array of arrays a “2dimensional array”

We can use them the same way as before, except we now use 2 
indices.

For example: 
 double[][] doubleArray = { {1,2,3}, {4,5,6}, {7,8,9,10} };

Now doubleArray[0] refers to the first array stored at the address of 
doubleArray.

This means that I can refer to an index of doubleArray!

i.e. doubleArray[0][1] refers to the element at index 1 of the first 
array stored at the address stored in dobuleArray.



Creating a 2d array.
As with 1d arrays, there are 2 ways you can set a 2d array.

The first is by making an initializer list (of arrays!) when you 
declare the variable. (This is what we did on the previous slide)

The second is by using the new keyword.

There are actually 2 ways to use the new keyword.



Creating a rectangular 2d array.
To create a rectangular 2d array, you can simply do:

double[][] doubleArray;
......
doubleArray = new double[size1][size2] ;

This will make size1 arrays of size2.

You can then set the values by referring to the 2 indices:

i.e. doubleArray[2][3] = 4.0;



Creating a “jagged” 2d array.
If you don't want a rectangular array, you can create each 
“subarray” separately.

For example:
double[][] doubleArray;
doubleArray = new double[size][] ;
//the above makes an array that will hold size arrays of doubles
//each of these arrays can have any size

//Then later you would do:
doubleArray[0] = new double[size2];
doubleArray[1] = new double[size3];



Writing equals on a 2d array
public static boolean array2dEquals(String[][] a1, String[][] a2) {
     if (a1.length != a2.length) {
          return false;
    }
     for (int i=0; i < a1.length; i++) {
           if (a1[i].length != a2[i].length) {
              return false;
           }
           for (int j=0; j < a1[i].length; j++ ) {
                    if (!a1[i][j].equals(a2[i][j])) {
                          return false;
                    }
            }
     }
         return true;
}



Writing equals on a 2d array
public static boolean array2dEquals(String[][] a1, String[][] a2) {
     if (a1.length != a2.length) {
          return false;
    }
     for (int i=0; i < a1.length; i++) {
           if (a1[i].length != a2[i].length) {
              return false;
           }
           for (int j=0; j < a1[i].length; j++ ) {
                    if (!a1.equals(a2[i][j])) { //careful not to do a1 != a2 
                          return false;
                    }
            }
     }
         return true;
}



Objects in Java

-In Java, any data type that you can 
store a reference to is an Object

References, by definition, store the 
address of an Object



Which of the following variables could 
store the address of an Object?

-int x;
-double d;
-String s;
-int[] foo;
-Flamingo f;
-Pizza[][][][][][] r;



Which of the following variables could 
store the address of an Object?

-int x;
-double d;
-String s;
-int[] foo;
-Flamingo f;
-Pizza[][][][][][] r;
All of these are reference variables. 
Remember there are exactly 8 primitives



Very important to understand:
-In the previous slides, s, foo, f, and r 
are NOT Objects. They are reference 
to Objects.

We sometimes will say “the String s” 
or “The int array foo” but really we 
mean the “Reference to a String s” or 
“The reference to the int array foo”



Strings are immutable
A String in Java is immutable . This 
means that it can not be changed.

But then, why are we able to write the 
following:

String s = “first value”;
s = “second value”;



Strings are immutable
Answer: A String is immutable in 
Java, but a reference to a String is not.

When I write s = “second value”;
 I am creating a brand new String and 
assigning the address of the new 
String to the variable s.



“Who cares whether Strings are 
immutable? I wish you were mutable!”
Think about what must happen when 
we write something like:

String s = “hello”;
s = s + “adding more stuff”

In memory, a brand new String is 
created and “hello” is copied into it



“Who cares whether Strings are 
immutable? I wish you were mutable!”
-Then this is added to the String 
“adding more stuff” . This is 
SSSLLLLLOOOOOOOWWWWWW



“Who cares whether Strings are 
immutable? I wish you were mutable!”
-This means if you had a program where you 
needed to add things to Strings a lot, you might 
be inclined to use a different approach. For 
example, you might create a char[] of a very 
large size and use a variable to keep track of 
what part of the char[] is “valid”

Then when you want to append to the “String” 
you don't need to copy everything.



Example: Changing the size of an array

-You can not change the size of an array once it 
is created.

-You can create a different array and store a 
different array in the same variable.

-The reasoning is the same as the example with 
String.



Example: Final with reference type

-Remember that a variable declared to be final 
can not change it's value.

final double PI = 3.14159;
PI = 2.71828; ----> Compiler error!



Example: Final with reference type

-What about using the keyword final with a 
reference type?

final int[] foo = {1,2,3,4,5};
foo[3] = 4;

Will the above compile?



Example: Final with reference type
-What about using the keyword final with a 
reference type?

final int[] foo = {1,2,3,4,5};
foo[3] = 4;

Will the above compile? Yes, because you are 
not changing the variable foo. foo still refers to 
the same address. The object has changed, not 
foo



Example: Final with reference type

-What about using the keyword final with a 
reference type?

final int[] foo = {1,2,3,4,5};
foo = new int[10];

Will the above compile?



Example: Final with reference type

-What about using the keyword final with a 
reference type?

final int[] foo = {1,2,3,4,5};
foo = new int[10];

Will the above compile? No. Here we are 
changing the value of the reference variable.



Example: Final with String

-What is the significance of using final with a 
String?

final String s = “hello”;

-We know that Strings are immutable (they 
can't change)
-We now made it so that s ALWAYS stores the 
same address.



Example: Final with String



Creating Objects (1)
•Declaring a reference variable is a separate operation from  
creating an object whose address in memory will be stored in 
that reference variable
•In general, we use the new operator to create an object:

numbers = new int[10];

•There are two situations where we create objects without using 
the new operator:
–When we use array initializer lists
–The first time we use a String literal, a String object representing this 
literal is automatically created



Creating Objects (2)
•When we create an object using the new operator, additional 
memory cells are allocated
–The object is stored in these additional memory cells
–These memory cells are not the same as the memory cells allocated when 
reference variables are declared
–The address of the memory cells in which the object is stored will be stored 
in a reference variable



What is different about an Object 
from a primitive type?

In Java,  Objects have 2 additional things that primitive 
types don't have:

1)Attributes: These are properties that are associated 
with a specific Object. Every Object will have it's own 
set of attributes.

2)Behaviors: These are methods that are associated with 
a specific Object. These methods have access to the 
attributes that are specific to that Object.



What is different about an Object 
from a primitive type?

You can access an attribute on an object by writing:

referencevariablename.attributename



Attributes

The first attribute we have seen of an Object is the 
length attribute of an array.

int[] foo = new int[10];
System.out.println(foo.length)

foo is the reference variable name
length is the name of the attribute



What is different about an Object 
from a primitive type?

You can call a behavior on an object by writing:

referencevariablename.behaviorname(input to method)



Behaviors

The first behaviors we have seen of an Object is the 
length and charAt behaviors of a String

String s = “yo yo waz up”;
System.out.println(s.length());
System.out.println(s.charAt(3))

s is the reference variable name
length  / charAt are the names of the behavior
We know it's a behavior not an attribute because of the 
() 



The null Literal Value
•Sometimes, we want a reference variable to contain a special 
value to indicate that the variable intentionally does not contain 
the address in memory of a valid object
•The literal value null can be used for this purpose
•A reference variable containing the value null is sometimes 
said to "point nowhere"
–In memory diagrams, null is often represented with a ground symbol



Using null
•One can assign null to a reference variable like one assigns an 
int literal like 42 to a variable of type int

int[] a;
a1 = null;

•One can check whether or not a reference variable contains the 
value null like one checks whether or not a variable of type int 
contains any value represented by an int literal like 42

if (a == null) {
// do something

} else {
// do something else

}



null-Related Caveats
•The address stored in a reference variable is always either the 
address in memory of a valid object of that variable's type, or 
null

–In Java, you cannot store an arbitrary memory address in a reference 
variable, nor manipulate memory addresses directly

•If you attempt to use access an object using a reference variable 
which contains null, your program will crash:

int[] a = null;
a[0] = 1; // a1 contains null: crash!

•When this occurs, the error message will mention that the 
program threw a NullPointerException
–The error message should also mention which line in your program caused 
the latter to crash



NullPointerDemo.java
• public class NullPointerDemo {
•   public static void main(String[] args) {
•     int[] a = null;
•  
•     System.out.println("Attempting to retrieve the " +
•       "element stored at index 0 of an array through a " 

+
•       "null reference variable...");
•     System.out.println("The value stored at index 0 of " 

+ 
•       "this array is: " + a[0]);
•   }
• }

What will happen if we run this program?

• 1
• 2
• 3
• 4
• 5
• 6
• 7
• 8
• 9
• 1

0
• 1

1



Defining your own types!
• So far, we have worked with types that are already defined for 

us.
•
• In the following several classes, we will discuss ways to work 

with objects that we define ourselves!



 
• Our types can consist of many different other types as 

variables.
•
• In a sense, they are just composite types.
•



• For example, if I wanted to define the 
type Human, I could decide that a Human 
consists of :

•
• 1 name
• 2 legs
• 2 arms
• 1 torso
• 1 head (unless it's Zaphod Beeblebrox)
• 2 feet
•



• Of course, if we wanted to do this in 
Java, we would have to define each of the 
types, Leg, Arm, Torso, Head, etc.

•
• Head could consist of 
•
• Brain, Eyes, Ears, Nose, Mouth



• The brain stores lots of information, so it 
may consist of 

•
• int age
• String name
• String[] friendsList
• String[] knowledgeList
• Neuron[] allNeurons
•
• etc.
•



• For starters, to make your own type in Java, 
you create a class with the name of the type 
you want to create.

•
• For example:
•
• public class Person {
•
•
• }
•



• Inside the class, you list all the other 
variables you want to store and give them 
names

•
• public class Person {
•        string name;
•        private Arm leftArm;
•        private Arm rightArm;
•        public Brain brain;
•          ....
• }
•



• In addition to storing attributes, your type 
can perform behaviors which will (usually) 
use or modify these attributes.

•
• For example, a person may have a behavior 

called “wave” which performs an action on 
his leftArm

•



• These behaviors are created using a method.
•
• Note that these methods are similar to 

before, but they do NOT have the word 
static before them.



• public class Person {
•        String name = “Dan”;
•        private Arm leftArm;
•        private Arm rightArm;
•        public Brain brain;
•
•        public void introduceSelf() {
•              System.out.println(“Hi, my name is 

” + name + “ . It is a pleasure to meet you”);
•         }
• }



• Now that you have created this type, you can 
use it in any other class the way we make 
other objects/variables. Note that your class 
will be a reference type.

•
• 1)Declare a variable of type Person
• 2)Create a new instance of the variable using 

the new keyword.
• 3)You can now access some of its attributes 

and behaviors.



• public class PersonDemo {
•        public static void main(Strings[] args) {
•             //declare a variable and create a 

person
•             Person scarecrow = new Person();
•
•             //call the behaviour introduceSelf()
•             p.introduceSelf();
•             //access the member variable brain 
•             // and create a new brain
•             scarecrow.brain = new Brain();
•       } }



You mean I didn't have to cross 
that yellow road? Who knew it 
could be so easy to get a brain



• Public vs. Private:
•
• Whenever you write the modifier public 

before either an attribute or behavior, it 
means that that attribute is accessible from a 
different class or instance.

•
• In other words, you can create an instances 

of the type, and then refer to the attribute or 
behavior via the . operator



public class Person {
    public String name;
    public int weight;
    
    public void introduceSelf() {
         System.out.println(“Hi. I'm ” + name);
    }

}



Now, somewhere else in your program 
(probably in a different file), you could have:

Person p = new Person();
p.name = “Dan”;

p.introduceSelf();



Now, somewhere else in your program 
(probably in a different file), you could have:

Person p = new Person(); /*create instance of 
person. Since a Person has to store both a 
String and an int, it will create a String and 
int variable corresponding to the new object 
*/

p.name = “Dan”;

p.introduceSelf();



Now, somewhere else in your program 
(probably in a different file), you could have:

Person p = new Person();
p.name = “Dan”; /*p now refers to a specific 

Person which has a name and a weight. This 
says get the name associated with p and set it 
equal to Dan */ 

p.introduceSelf();



Now, somewhere else in your program 
(probably in a different file), you could have:

Person p = new Person();
p.name = “Dan”;

p.introduceSelf(); /*Since p is a person, it has 
a behaviour called introduceSelf() This calls 
the method introduceSelf with the object p---
meaning that inside introduceSelf() name 
will equal p's name and weight will equal p's 
weight */



• Public vs. Private:
•
• If an attribute or behavior is private then we 

can only use if from the specific instance of 
the class. (Note: if you don't write anything 
then private is the default)



public class Person {
    public String name;
    int weight;
    
    public void introduceSelf() {
         System.out.println(“Hi. I'm ” + name);
    }

}



Now, somewhere else in your program 
(probably in a different file), you could have:

Person p = new Person();
p.name = “Dan”;

p.introduceSelf();
System.out.println(p.name + “'s weight is” + 

p.weight);



Now, somewhere else in your program 
(probably in a different file), you could have:

Person p = new Person();
p.name = “Dan”;

p.introduceSelf();
System.out.println(p.name + “'s weight is” + 

p.weight); /*ERROR! weight is a private 
field */



It is usually a good idea to make all your 
instance variables private rather than public 
(We'll talk about why later this class)

However, many times we need to get and set 
the values of these variables. To do this, we 
will write (usually) very short methods 
which are known as getters and setters



A getter is a behavior (i.e. method) of a class 
which simply gets a specific value and 
returns it. For example:

public class Person {
    public String name;
    int weight;
    
    public int getWeight(){
         return weight;
    }
}



Now, somewhere else in your program 
(probably in a different file), you could have:

Person p = new Person();
p.name = “Dan”;

p.introduceSelf();
System.out.println(p.name + “'s weight is” + 

p.getWeight());



A setter is a behavior (i.e. method) of a class 
which takes as input a new value and sets an 
instance variable to it. For example:

public class Person {
    public String name;
    int weight;
    
    public void setWeight(int newValue){
         weight = newValue;
    }
}



Now, somewhere else in your program 
(probably in a different file), you could have:

Person p = new Person();
p.name = “Dan”;

p.introduceSelf();
System.out.println(p.name + “'s weight is” + 

p.getWeight());
p.setWeight(5000); /*now I need to diet :( */



So what is the point of making it private if we 
then have these getters and setters anyway?



Mainly organization and encapsulation

1)If later on we decide to be more restrictive, 
we can do so more easily:

public int getWeight() {
    if (weight > 100) {
          return 100;
     }
     return weight;
}



Mainly organization and encapsulation

1)Everything in our class is nicely contained 
now. 

Suppose I have a program with 25 .java files in 
it. If I make my variable public and its value 
isn't what I would expect, I have to go 
through 25 files and figure out where I set it 
incorrectly.

Now though, I know for sure where it is set. It 
would be easier to add a print statement at 
that point.



Example: Suppose I knew that weight was 
getting set to a value of 200 when I know it 
shouldn't be

public void setWeight(int newWeight) {
    if (newWeight > 200) {
          /*print some values here*/
     }
}



• Constructors:
•
• In Java, there is one special type of method 

called a constructor.
•
• A constructor is called exactly one time for 

every object you create with the new 
keyword.

•
• There is a default constructor for each object 

you create. You can also write your own.



• public class Person {
•     String name = “Dan”;
•     int weight;
•      public Person() {
•             weight = ??
•       }
• }
•
• Interesting things to notice:
•   1)Name is the same as the class
•   2) No return type!



• Constructors:
•
• The main use of a constructor is to initialize 

the attributes that are part of the object.
•
• In the previous case, want to make sure that 

every Person has a weight, so we initialize it.



• Constructors with arguments:
•
• You can also create constructors with 

arguments. For example:
•
• public class Person {
•     String name;
•      int weight = 0;
•      boolean isMale;
•      public Person(String theName, boolean isBoy) {
•            name = theName;
•            isMale = isBoy;
•     }}



• Constructors with arguments:
•
• Now to use this constructor, you add the 

arguments right after the new keyword.
•
• Person p = new Person(“Darcy Tucker”, false);



• The this keyword.
•
• In Java, when you write this 

inside of a class, it means 
accessing the object on which the 
behavior was called.

•
• This is the default behavior if you 

omit the word this
•
•



A getter is a behavior (i.e. method) of a class 
which simply gets a specific value and 
returns it. For example:

public class Person {
    public String name;
    int weight;
    
    public int getWeight(){
         return this.weight;
    }
}



• Static vs non-static
•
• A behavior/method or attribute is non-static if it 

requires an object to operate on. In other words, 
you use it by first creating an object, and then 
using the dot operator on an object

•
• i.e. Person p = new Person(“Foo”, true);
• p.introduceSelf();

•
•



• Static vs non-static
•
• A behavior/method or attribute is static if it 

requires a type to operate on. In other words, you 
use it by writing the name of a type and then the 
name of the attribute/behavior. Because of this 
nature, there is exactly one of these per type.

•
• i.e. Math.sqrt(4);
•
• We don't first create a Math object. Math is the 

type

•
•



• Calling non-static things from a static context.

•
• An error we see sometimes relates to calling 

non-static objects from a static context. 
•
• If I have a method or property that is not 

static, then I MUST create an object first and 
then call it on that object.

•
•



• Calling static things from a non-static context:

•
• Similarly, if I have a static 

attribute or behavior, then I must 
call it using the name of the type.

•
•



• In either case, if I make the call in the same 
instance of the same class, then I can omit this.

•
• i.e. inside the class Person, I can 

just write “name” not “this.name”
•
•
•



A setter is a behavior (i.e. method) of a class 
which takes as input a new value and sets an 
instance variable to it. For example:

public class Person {
    public String name;
    int weight;
    
    public void setWeight(int newValue){
         weight = newValue;
    }
}



Now, somewhere else in your program 
(probably in a different file), you could have:

Person p = new Person();
p.name = “Dan”;

p.introduceSelf();
System.out.println(p.name + “'s weight is” + 

p.weight); ---->ERROR: Can't access private
                           field
p.weight =5000; /*now I need to diet :( */



It is good style to make all member variables 
private.

This ensures better encapulation of our code---
meaning that it is more self-contained.

If we need to access the values or set the 
values of member variables, we can create a 
public method inside our class to do so:

These are referred to as getters and setters.



A getter is a behavior (i.e. method) of a class 
which simply gets a specific value and 
returns it. For example:

public class Person {
    public String name;
    int weight;
    
    public int getWeight(){
         return this.weight;
    }
}



A setter is a behavior (i.e. method) of a class 
which takes as input a new value and sets an 
instance variable to it. For example:

public class Person {
    public String name;
    int weight;
    
    public void setWeight(int newValue){
         weight = newValue;
    }
}



Now, somewhere else in your program 
(probably in a different file), you could have:

Person p = new Person();
p.name = “Dan”;

p.introduceSelf();
System.out.println(p.name + “'s weight is” + 

p.getWeight());
p.setWeight(5000); /*now I need to diet :( */



Suppose I have a reference variable x of type t.

If the class t is defined to have private attribute 
a and private behavior b, normally I can not 
write

x.a 
or 
x.b()

I will get an error because a and b are private  



One exception occurs if you are inside the 
class but inside a different instance of the 
object. For example: 



public class Person {
    private String name;
    int weight;
    
    //the following method prints an introduction to another person
    public void introduceTo(Person p) {
         System.out.println(“Hi ” + p.name + “! I am ” + this.name+ “!”); 
    }
}

Notice that name is a private field but we can 
still access p.name on it. This is only 
because p is a Person and we are in Person 
class


