
-Write a program that lists all of the prime
numbers from 1 to 10,000.
Remember a prime number is a # that is
divisible only by 1 and itself

Suggestion: It probably will be useful to write a
method isPrime(int n) which takes as input a
number n and outputs whether it is prime or not.

Hint: x % y == 0 iff x is a multiple of y

Example: Computing prime
numbers

Last Week

-If statement
-While Loop
-For Loop
-Break/Continue

This Week

-Arrays
-Reference Types
-Two Dimensional
Arrays

Suppose we wanted to write a Java program to store a
spreadsheet.

Let's say we are going to read all of this from the keyboard.

We could make lots of variables and a scheme where we wrote

sheet_row_column

i.e. int sheet_1_b could store the first row and 2nd column.

Example: Storing a spreadsheet

Example: Storing a spreadsheet

int sheet_1_a, sheet_1_b, sheet_1_m,sheet_1_c;
int sheet_2_a, sheet_2_b, sheet_1_m,sheet_2_c;
int sheet_3_a, sheet_3_b, sheet_1_m,sheet_3_c;
int sheet_4_a, sheet_4_b, sheet_1_m,sheet_4_c;
int sheet_5_a, sheet_5_b, sheet_1_m,sheet_5_c;
int sheet_6_a, sheet_6_b, sheet_1_m,sheet_6_c;
int sheet_7_a, sheet_7_b, sheet_1_m,sheet_7_c;
int sheet_8_a, sheet_8_b, sheet_1_m,sheet_8_c;
int sheet_9_a, sheet_9_b, sheet_1_m,sheet_9_c;

Example: Storing a spreadsheet
Scanner s = new Scanner(System.in);

sheet_1_0 = s.nextInt();
sheet_1_1 = s.nextInt();
sheet_1_m = s.nextInt();
sheet_1_f = s.nextInt();
sheet_2_0 = s.nextInt();
sheet_2_1 = s.nextInt();
sheet_2_2 = s.nextInt();
sheet_2_3 = s.nextInt();

Once we go through all this trouble to enter the grades, we still have to
work with the numbers!

One idea would be if we could do some sort of for loop.

For example:

for (int i=0; i<300; i++) {

System.out.println(“The first column of row ” + i + “ is ” +
 sheet_i_a

}

However, Java does not allow us to write variables inside our variable
names. We can, however, do something pretty similar.

COMP-202
Unit 6: Arrays

CONTENTS:
Array Usage
Multi-Dimensional Arrays
Reference Types

5

int number = 5

In memory:

A variable of type int.

5

int number = 5

In memory:

A variable of type int.

An integer array corresponds to variable of type int[].

0 1 2 1240 826 15

int[] weights = {5,6,0,4,0,1,2,12,82,1}

In memory:

0 1 2 1240 826 15

int[] weights = {5,6,0,4,0,1,2,12,82,1}

In memory:

An array is a fixed-size, ordered collection of
elements of the same type.

Why use arrays?
They make large amounts of data easier to handle.

0 1 2 1240 826 15

int[] weights = {5,6,0,4,0,1,2,12,82,1}

In memory:

In memory:

Each cell in the array has an index.

0 1 2 1240 826 15

10 2 3 4 5 6 7 8 9

e.g. The cell that contains 82 has index 8.
 The cell that contains 5 has index 0.

In memory:

Each cell in the array has an index.

0 1 2 1240 826 15

10 2 3 4 5 6 7 8 9

e.g. The cell that contains 82 has index 8.
 The cell that contains 5 has index 0.

int j = weights[8] + weights[0];

So you can write:

Part 1: Array Basics

Array Declaration Examples
•double[] prices;
–Declares an array called prices
–Each element in this array is a double; variable prices is of type double[]
•char[] code;
–Declares an array called code
–Each element of this array is a char; variable code is of type char[]
•String[] names;
–Declares an array called names
–Each element of this array is a String; variable names is of type String[]

Assigning values to an array
If you know ahead of time how many
numbers you want to store (and their
values) you can assign values to an
array when you declare it:

int[] someNumbers = {1,2,3,4,5};

Assigning values to an array
If you do not know ahead of time how
many numbers you want to store (or don't
know their values), you have to assign
the values in 2 phases:

1) Tell the computer how many values you
want to store

2) Set these values

Setting the size of an array
To specify how large an array should be,
you do the following

sometype[] myArray;

//declare an array of type sometype

...

myArray = new sometype[size];

Accessing elements of an array

To get or set values in an
array, you will always use
both the array name, and the
index of the value you want.

You can think of the index
like a subscript.

Accessing elements of an array

Array indices start from 0

//set x to be first value in
//array

int x = myArray[0];

//set 3rd value in myArray

myArray[2] = 10;

public class FirstArray {
 public static void main(String[]
args){
 String[] names = {"Jordan",
"Jesse", "Joshua"};
 for(int i = 1; i >= -1; i = i - 1)
 System.out.println(names[i+1]);
 }
}

What does this display?

public class FirstArray {
 public static void main(String[]
args){
 String[] names = {"Jordan",
"Jesse", "Joshua"};
 for(int i = 1; i >= -1; i = i - 1)
 System.out.println(names[i]);
 }
}

What does this display?

5

int number = 5

In memory:

Review: how primitive types are
stored in memory

Example:

number

number represents a location in memory where the
integer 5 is stored

Array types are NOT primitive types

Example:

weights represents a location in memory where the

address of the first array cell is stored.

0 1 2 1240 826 18

int[] weights = {8,6,0,4,0,1,2,12,82,1}

weights 101011

Primitive vs. reference types

• Primitive types:
– The variable

represents the
location in memory
at which an actual
value, like the
integer 175.

• Reference types:
– The variable

represents the
location in memory
at which another
memory address
(or “reference”) is
stored.

0 1 2 1240 826 15

int[] weights = {5,6,0,4,0,1,2,12,82,1}

In memory:

Initializer Lists

•The above statement does all the following in one step:
–It declares a variable of type int[] called numbers
–It creates an array which contains 3 elements
–It stores the address in memory of the new array in variable numbers
–It sets the value of first element of the array to 2, the value of the second
element of the array to 3, and the value of the last element of the array to be 5

• Often, these steps are carried out separately.

int[] numbers = {2, 3, 5};

Array types are reference types
•The declaration

int[] numberArray;

creates a reference variable, which holds a reference to an int[]

– No array is created yet, just a reference to an array.

Reference vs Primitive in methods
-Remember that when you call a method that
takes input arguments, you are passing the
value of the expressions you pass to the
method. For example if I have the header:

public static void foo(int a, int b)
 and I call it with :
foo(3+4, x+y),
I am passing the value 7 and whatever x+y is
to foo, and these values are assigned in a and b

Reference vs Primitive in methods

-When you call a method, whether it is a
primitive or a reference type, remember
that you are only passing to the method the
value of the variable.

Reference vs Primitive in methods

public static void badSwap(int a, int b) {
int temp = a;
a = b;
b = temp;

}

If I call this method badSwap(x,y), it will
not swap the values in x and y. The method
badSwap only knows the values of x and y

Reference types

-When you call a method with input of
reference types, we still pass the value of
the variable, but the value now represents
an address in memory.

-If I swap the address inside the method,
nothing will change outside.
-But if I swap the contents at the address, it
will be “permanent”

Arrays as reference types
For example, if I want to swap two arrays
in a method, I have to swap the contents of
the arrays.

The array addresses will still be the same,
but each array would now store what used
to be in the other.

{
....
int[] array1 = {1,2,3,4,5};
int[] array2 = {6,7,8,9,10};

badSwap(array1,array2)
....
}

public static void badSwap(
int[] a1, int[] a2) {
int[] temp = a1;
a1 = a2;
a2 = temp;

}

This swaps a1 and a2 indeed, but the change
will not matter in the calling function

Aside: You can figure out how many elements
are in an array by writing

arrayname.length

public static void goodSwap(int[] array1,
int[] array2) {
int temp;

for (int i=0; i < array1.length;i++) {
temp = array1[i];
array1[i] = array2[i];
array2[i] = temp;

}
}

Allocating Arrays

variableName = new type [size];

new is a reserved word
in Java

The type of the
elements to be stored
in the array

An expression which
specifies the number
of elements in the
array

The variable in which
the location in memory
of the newly created
array will be stored

Allocating Arrays

• Once an array has been created, its size cannot be changed

•As with regular variables, the array declaration and the array
allocation operation can be combined:

type[] variableName = new type[size];

Initializer Lists
int[] numbers = {2, 3, 5};

is equivalent to the following code fragment:

int[] numbers = new int[3];
numbers[0] = 2;
numbers[1] = 3;
numbers[2] = 5;

Exercise on reference types:
what does this display?

public class ArrayCopy {
 public static void main(String[] args){
 int[] numbers = {1, 2, 3};
 int[] differentNumbers = new int[3];
 differentNumbers = numbers;
 numbers[1] = 2;
 differentNumbers[1] = 3;
 System.out.println(numbers[1]);
 System.out.println(differentNumbers[1]);
 }
}

Array Access Example

numbers 0 0 0 000 0

10 2 3 4 5 6 7 8 9

numbers[0] = 1;

numbers[1] = numbers[0];

numbers[2 * SIZE – 1] = 2 * numbers[0] + 1;

SIZE 5

1 1 3

int[] weights = {5,6,0,4,0,1,2,12,82,1}
total = weights.length;

Array Length

We can get the length of any array
with [arrayName].length

Here, total is assigned the value 10.

int[] weights = {5,6,0,4,0,1,2,12,82,7}
total = weights.length;

Array Length

What is the index of the cell containing 7
in terms of weights.length?

int[] weights = {5,6,0,4,0,1,2,12,82,7}
total = weights.length;

Array Length

What is the index of the cell containing 7
in terms of weights.length?

Answer: weights.length - 1

int[] weights = {5,6,0,4,0,1,2,12,82,1}
weights.length = 2; // illegal!

The length of an array is a constant

The length field of an array can be
used like any other final variable of
type int.

public static void init(int[] list, int start){
 // use a loop to assign a value to each cell

}

Fill in the method init so that it
initializes the array list with a
decreasing list of integers starting at
start.

e.g. If myArray has length 5, a
call to init(myArray, 20) will assign
the following values to an array:
{20, 19, 18, 17, 16}.

Bounds Checking (1)
int[] myArray = new int[5];
myArray[5] = 42;

// Array myArray contains 5 elements, so
// the valid indices for myArray are 0-4
// inclusive
// Therefore, the program crashes

•When this occurs, the error message will mention that the
program threw an ArrayIndexOutOfBoundsException
–The error message should also mention which line in your program caused
the latter to crash

IndexOutOfBoundsDemo.java
• public class IndexOutOfBoundsDemo {
• public static void main(String[] args) {
• final int SIZE = 5;
• int[] myArray;
•
• myArray = new int[SIZE];
•
• System.out.println("Attempting to retrieve the " +
• "element at position " + SIZE + " of an array of "

+
• "size " + SIZE);
• myArray[SIZE] = 42;
• System.out.println("The element at position " + SIZE

+
• " of this array is " + myArray[SIZE]);
• }
• }

• 1
• 2
• 3
• 4
• 5
• 6
• 7
• 8
• 9
• 1

0
• 1

1
• 1

2
• 1

3
• 1

4
• 1

5

Reading Exception Output (1)

• Attempting to retrieve the element at position 5 of an array
of

• size 5
• Exception in thread "main" java.lang.
• ArrayIndexOutOfBoundsException: 5
• at IndexOutOfBoundsDemo.main(IndexOutOfBoundsDemo.java:11)
•

•The program's output:

Method where the problem occurred

File where the problem occurred

Line number where the problem occurred
•Nature of the problem and additional information
•Index we tried to access and caused the crash

Off-By-One Errors Revisited
•Off-by-one errors are common when using arrays:

int[] array = new int[100];
int i;

i = 0;
while (i <= 100) {
 array[i] = 2 * i;
 i = i + 1;
}

Last Class

•Arrays
•Declaring an array
•Setting an array using an intializer list
•Indices of an array

0 1 2 1240 826 15

int[] weights = {5,6,0,4,0,1,2,12,82,1}

In memory:

An array is a fixed-size, ordered collection of
elements of the same type.

In memory:

Each cell in the array has an index.

0 1 2 1240 826 15

10 2 3 4 5 6 7 8 9

e.g. The cell that contains 82 has index 8.
 The cell that contains 5 has index 0.

int j = weights[8] + weights[0];

So you can write:

Declaring an Array Variable

To declare an array variable, you simply
write the type you want an array of,
followed by [] followed by the name of the
variable.

int[] myArray;

declares an array variable.

Creating an Array
The previous slide just creates a variable to
store an array later on. To actually create an
array, you can do one of two things:

1)At the same time you declare the array
variable, give the values you want to put into
the array:

boolean[] rangersWinsByGame = { true, true,
true, true, true, true, true, true };

Creating an Array
2) Use the new operator:

variablename = new variabletype[size];

canadiensWins = new boolean[82];

Note: boolean array values are automatically
intialized to false

Setting or Getting Specific Values
Since an array is ordered, we can assign each
element an index, starting from 0.

The first element is given index 0
The second element is given index 1
The last element is given index size – 1

Now you can use arrayname[index] like any
other expression.

Example: Computing the sum of an
array

What if we wanted to write a method that took
as input an int[] and returned the sum of its
values?

Example: Computing the sum of an
array

What if we wanted to write a method that took
as input an int[] and returned the sum of its
values?

public static int sum(int[] array) {
 int totalSoFar = 0;
 for (int i=0; i < array.length; i++) {
 totalSoFar += array[i];
 }
}

This Class

•Reference variables in more detail
•Two dimensional arrays
•Strings

Part 2: Reference Types

Primitive Types
•We know that there are two broad kinds of types in Java:
primitive types and reference types
–We have already covered primitive types
–

–There are exactly 8 primitive types.
–With a primitive type, a variable stores a specific value
in it.

Reference Types

•Other than float, int, double, boolean, char, long, short,
and byte every single other type is a reference type.

This means that the variable stores an address as it's
value. That address refers to a specific place in memory
where some data is stored.

Reference Types

It would be fair two say that there are 9 things that can
be stored in a Java variable:

1)Each of the 8 primitive types
2)A memory address

Reference Types

Memory

Reference Types

The balloon contains the data you want
to manipulate

Memory

Reference Types

The balloon itself can change (for
example, by growing or shrinking) but
the connection to memory will not

Memory

Reference Types

In addition, we can attach many different
kinds of things to our balloon string.

Ex: Orange balloon
Blue balloon
Red balloon

Memory

Reference Types

With primitive types, the data itself is
stored in memory without a “string”

With reference types, memory just stores
the string.

Reference Types

A reference variable is like a string (not
in the Java sense) to a balloon

It is a link from variables to data

Memory

Reference Variables
When I declare a reference variable, by writing:

type variablename;

I am creating a balloon string, but no balloon.

For example:

int[] myArray;

creates a balloon string that later could be attached to a
balloon that contains an int[] .

Reference Variables
When you write:

 new int[10];

you are actually creating the balloon-- an array of size 10

When you write

myArray = new int[10];

you are creating a balloon AND attaching the variable (i.e.
balloon string) to that balloon

Reference Variables
If I just write:

new int[10];

in a statement all by itself, I'll be creating a balloon, but not
attaching it to any string.

What will happen in this case?

Reference Variables
Much like a balloon, it will just drift away.

What happens if I write:

int[] myArray;
myArray = new int[10];
myArray = new int[100];

Reference Variables

int[] myArray;

Creates a variable in Java to store the address of an int[] (i.e.
it creates a balloon string)

Reference Variables
Much like a balloon, it will just drift away.

What happens if I write:

myArray = new int[10];

Creates an int array of size 10 and sets the address stored in
the variable myArray to be the location of this array. (i.e. it
creates a balloon and attaches it to the balloon string)

Reference Variables
Much like a balloon, it will just drift away.

What happens if I write:

myArray = new int[100];

Creates an int array of size 100 and sets the address stored in
the variable myArray to be the location of this array. (i.e. it
creates a 2nd balloon and attaches it to the balloon string. In
doing so, it has to release the 1st balloon, causing the first
balloon to drift away.)

Using Reference Variables
For the most part, Java will conceal from you many of the
details about reference variables. There are 2 things to be
clear about:

1)Whenever you write

variablename = ________

you are changing the value stored in the variable (i.e. the
balloon string)
Note: it has to be EXACTLY variablename = (not
variablename[index] = for example)

Using Reference Variables
For the most part, Java will conceal from you many of the
details about reference variables. There are 2 things to be
clear about:

2)Whenever you write anything else involving the variable,
you are going to the address in memory and doing something
to it (either reading some value(s) or writing some value(s))

In the metaphor, you are following the balloon string to the
balloon itself and performing an action there.

Passing Arguments to Methods
Remember, when you call a method with arguments, the
arguments passed are evaluated in the calling function and
then copied to the variables defined as the formal arguments
to the method:

Ex: public static void methodTest(int x, int y) {
 x++; y++;
}
public static void main(String[] args) {
 int z = 1;
 methodTest(z, z+1) ;
}

Passing Arguments to Methods
public static void methodTest(int x, int y) {
 x++; y++;
}
public static void main(String[] args) {
 int z = 1;
 methodTest(z, z+1) ;
}

First the expression “z” is evaluated to be 1 and so the
number 1 is copied into the variable x.
Then the expression “z+1” is evaluated to be 2 and so the
number 2 is copied into the variable y

Passing Arguments to Methods
public static void methodTest(int x, int y) {
 x++; y++;
}
public static void main(String[] args) {
 int z = 1;
 methodTest(z, z+1) ;
}
After “y++” executes, the value of x is 2 and y is 3.

However, when the method returns back to the main method,
the value of z is still 1. This is since x and y got their values
from an expression related to z, but that's the only connection

Passing Arguments to Methods
This idea will apply with arrays as well.

public static void methodTest(int[] x) {
 x = new int[5];
}
public static void main(String[] args) {
 int[] z = {1,2,3,4,5};
 methodTest(z) ;
}
First we create an int[] with values 1,2,3,4,5. We assign a variable z to store
the address of the array. We then call the method methodTest with argument
of z. This means we evaluate the expression z, which will evaluate to an
address, and assign its value to the variable x.
In the analogy, this means x and z are 2 balloon strings on the same balloon
x = new int[5] just creates a new balloon and attaches x to it

Making a Change
public static void methodTest(int[] x) {
 x[0]++;
}
public static void main(String[] args) {
 int[] z = {1,2,3,4,5};
 methodTest(z) ;
}
Here, we are doing something different. The first few steps are the same. We
create an array, attach the variable z to it. We then call the method
methodTest() with 1 argument. This means we evaluate the expression z and
assign it (an address) to the variable x.
However, inside the method we do something different. We increment the
value x[0]

Making a Change
public static void methodTest(int[] x) {
 x[0]++;
}
public static void main(String[] args) {
 int[] z = {1,2,3,4,5};
 methodTest(z) ;
}
Remember that this sort of statement means “go to the address stored in the
variable x and increment its 0th element”

In the metaphor this would mean “follow the string to the balloon and add 1
to the 0th element of the balloon”

What about this?
public static void methodTest(int[] x) {
 x = new int[10];
 x[0]++;
}
public static void main(String[] args) {
 int[] z = {1,2,3,4,5};
 methodTest(z) ;
}

 What are the values stored in the array linked to the variable z after the
method methodTest() is complete?

What about this?
public static void methodTest(int[] x) {
 x = new int[10];
 x[0]++;
}
public static void main(String[] args) {
 int[] z = {1,2,3,4,5};
 methodTest(z) ;
}

 What are the values stored in the array linked to the variable z after the
method methodTest() is complete?
 {1,2,3,4,5}

Aliases (1)
•When the address in memory of one object is stored in two or
more different variables, we say that the variables are aliases
•We need to be careful when working with aliases
–Aliasing has side-effects that we need to be aware of

•Because the variables contain the address in memory of the
same object, the result of changing the object using one of its
aliases will be reflected through the other aliases
–Recall that the object is not stored in the reference variables; instead, the
reference variables specify where to find the object in memory
–Thus, changing the object is not the same as changing the contents of the
reference variable which contain the address of this object

Aliases (2)
•To "de-alias" the variables, we simply need to store the address
of a different object in one of them by using an assignment
statement
•Note that aliasing is only a property of reference types; it is not
a property of primitive types
•
•In the balloon metaphor an alias means you have two balloon
strings that each are attached to the same balloon.

Alias Example
•Consider the following code fragment:

int[] a1 = {2, 3, 5};
int[] a2 = a1;
a1[0] = 7;
int v = a2[0];

•What will be the value of variable v after the last line in the
above fragment is executed?
•The answer is: 7 (?!?)
–Because a1 and a2 are aliases for the same object, any change to the object
via one of its aliases will be reflected through the other alias

Comparing Objects (1)
•Among the comparison operators, only == and != are defined
for reference types
–If you try to compare two reference variables using <, <=, >, or >=, the
compiler will report an error

•Moreover, when used to compare reference variables, the ==
and != operators check whether the two reference variables refer
to the same object in memory
–In other words, for reference variables, the == and != operators check
whether the addresses stored in them are the same
–In yet other words, the == and != operators check whether two reference
variables are aliases for the same object
–But two different objects, stored at different addresses, can have the same
contents…

2 3 5

2 3 5

2 3 5

Comparing Objects Using == (1)
• int[] a1 = {2, 3, 5}; // Line 1

• int[] a2 = a1; //
Line 2

• boolean b = (a1 == a2); // Line 3

a1 a2

b true

Line 2:

a1

Line 1:

Line 3:

a1 a2

0 1 2

0 1 2

0 1 2

Comparing Objects Using == (2)
• int[] a1 = {2, 3, 5}; // Line 1

• int[] a2 = {2, 3, 5}; // Line 2

• boolean b = (a1 == a2); // Line 3

b false

2 3 5a1

Line 1: 0 1 2

2 3 5a1

Line 2: 0 1 2

2 3 5

0 1 2

a2

2 3 5a1

Line 3: 0 1 2

2 3 5

0 1 2

a2

More on Comparing Objects
•To see check whether two objects have the same contents, we
need to compare their contents manually
–For arrays, this can be done using a loop to verify whether all elements are
the same
–For other kinds of objects (like Strings), we can use the equals() method

•In fact, the reason Strings should not be compared using the
== and != operator is because String is a reference type
–Therefore, when applied to String variables, the == and != operators check
whether the variables contain the address in memory of the same String
object
–But two String variables could contain the addresses of two different
String objects which consist of the same characters in the same order

More on Comparing Objects (2)
–In such a case, the expression involving the == operator would evaluate to
false, even though the Strings really are equal
–Again, never use the == and != operators to compare Strings for equality
(or inequality) unless you are really sure of what you are doing; always use
the equals() method to compare Strings

The null Literal Value
•Sometimes, we want a reference variable to contain a special
value to indicate that the variable intentionally does not contain
the address in memory of a valid object
•The literal value null can be used for this purpose
–Like the boolean literals true and false, null is not technically a
reserved word, but you cannot use it for any purpose other than as a literal
value for reference variables
–null can be assigned to reference variables of any type

•A reference variable containing the value null is sometimes
said to "point nowhere"
–In memory diagrams, null is often represented with a ground symbol

Using null
•One can assign null to a reference variable like one assigns an
int literal like 42 to a variable of type int

int[] a;
a1 = null;

•One can check whether or not a reference variable contains the
value null like one checks whether or not a variable of type int
contains any value represented by an int literal like 42

if (a == null) {
// do something

} else {
// do something else

}

null-Related Caveats
•The address stored in a reference variable is always either the
address in memory of a valid object of that variable's type, or
null

–In Java, you cannot store an arbitrary memory address in a reference
variable, nor manipulate memory addresses directly

•If you attempt to use access an object using a reference variable
which contains null, your program will crash:

int[] a = null;
a[0] = 1; // a1 contains null: crash!

•When this occurs, the error message will mention that the
program threw a NullPointerException
–The error message should also mention which line in your program caused
the latter to crash

NullPointerDemo.java
• public class NullPointerDemo {
• public static void main(String[] args) {
• int[] a = null;
•
• System.out.println("Attempting to retrieve the " +
• "element stored at index 0 of an array through a "

+
• "null reference variable...");
• System.out.println("The value stored at index 0 of "

+
• "this array is: " + a[0]);
• }
• }

What will happen if we run this program?

• 1
• 2
• 3
• 4
• 5
• 6
• 7
• 8
• 9
• 1

0
• 1

1

Reading Exception Output (2)

• Attempting to retrieve the element stored at index 0 of an
array

• through a null reference variable...
• Exception in thread "main" java.lang.NullPointerException
• at NullPointerDemo.main(NullPointerDemo.java:8)
•

•The program's output:

Nature of the problem

`

Garbage Collection (1)
•When there are no more reference variables containing the
address of an object, the object can no longer be accessed by the
program
•It is useless, and therefore called garbage
•Java performs automatic garbage collection periodically
–When garbage collection occurs, all the memory allocated to store garbage
objects is made available so it be allocated to store new objects

•In other languages, the programmer has the responsibility for
performing garbage collection
•Always ensure you do not lose the last reference to an object
you still need

Garbage Collection (2)
•On the other hand, if you no longer need an object, you should
make sure that none of your reference variables contain its
address in memory
–You can do this by assigning null to the reference variables which contain
the address of this object
–This is so that the memory it occupies can be reclaimed by the garbage
collector and reused to store new objects

Passing Reference Types (1)
•Recall: Parameter passing works just like an assignment
statement
–The value of the actual parameter is copied into the method's formal
parameter

•When passing reference types, the value of the actual parameter
also is copied into the formal parameter just like in an
assignment statement
•However, recall that the value stored in a reference variable is
the address in memory where an object is located, not the object
itself

Passing Reference Types (2)
•Therefore, for parameters whose types are reference types, the
value copied in the formal parameter is the address where an
object is stored in memory
•This implies that:
–When passing reference types, the formal parameter and the actual
parameter become aliases
–If a method changes the contents of an object whose address is stored in a
formal parameter, the change will also be reflected by the actual parameter
–However, if you change the address stored in the formal parameter, the
address stored in the actual parameter will not change

ReferenceAssignDemo.java (1 / 2)
• public class ReferenceAssignDemo {
• public static void main(String[] args) {
• int[] a1 = {1, 2, 3};
• int[] a2 = {4, 5, 6};
• int[] ac1, ac2; // *** Line 1
•
• System.out.println("Value of a1[0]: " + a1[0]);
• System.out.println("Value of a2[0]: " + a2[0]);
•
• ac1 = a1;
• ac2 = a2; // *** Line 2
•
• System.out.println("Value of ac1[0]: " + ac1[0]);
• System.out.println("Value of ac2[0]: " + ac2[0]);
•
• // Continued on next slide

ReferenceAssignDemo.java (2 / 2)
• // Continued from previous slide
• ac1[0] = 7;
• ac2 = new int[3];
• ac2[0] = 8;
• ac2[1] = 9;
• ac2[2] = 10; // *** Line 3
•
• System.out.println("New value of ac1[0]: " + ac1[0]);
• System.out.println("Value of new ac2[0]: " + ac2[0]);
• System.out.println("Value of a1[0] after assignment: " +
• a1[0]);
• System.out.println("Value of a2[0] after assignment: " +
• a2[0]);
• }
• }

What does this display?
What does it look like in memory while it is running?

More Aliases in Memory (1)
•Memory contents after execution of line 1:

a1 a2

ac2ac1

1 2 3

0 1 2

4 5 6

0 1 2

- -

More Aliases in Memory (2)
•Memory contents after execution of line 2:

a1 a2

ac2ac1

1 2 3

0 1 2

4 5 6

0 1 2

More Aliases in Memory (3)
•Memory contents after execution of line 3:

a1 a2

ac2ac1

7 2 3

0 1 2

4 5 6

0 1 2

8 9 0

0 1 2

ReferencePassingDemo.java (1 / 2)
• public class ReferencePassingDemo {
• public static void main(String[] args) {
• int[] a1 = {1, 2, 3};
• int[] a2 = {4, 5, 6};
•
• System.out.println("Value of a1[0] before calling m(): " +
• a1[0]);
• System.out.println("Value of a2[0] before calling m(): " +
• a2[0]);
• System.out.println("--");
• m(a1, a2);
• System.out.println("--");
• System.out.println("Value of a1[0] after calling m(): " +
• a1[0]);
• System.out.println("Value of a2[0] after calling m(): " +
• a2[0]);
• }
•
• // Continued on next slide

ReferencePassingDemo.java (2 / 2)
• // Continued from previous slide
• public static void m(int[] ac1, int[] ac2) {
• System.out.println("Value of received ac1[0]: " + ac1[0]);
• System.out.println("Value of received ac2[0]: " + ac2[0]);
• // *** Line 2
• ac1[0] = 7;
• ac2 = new int[3]; // *** Line 3
• ac2[0] = 8;
• ac1[1] = 9;
• ac2[2] = 0;
• System.out.println("New value of ac1[0]: " +
• ac1[0]);
• System.out.println("Value of new ac2[0]: " +
• ac2[0]);
• }
• }

What does this display?
What does it look like in memory while it is running?

Reference Passing in Memory (1)
•Memory contents after execution of line 1:

a1 a21 2 3

0 1 2

4 5 6

0 1 2

main()

Reference Passing in Memory (2)
•Memory contents after execution of line 2:

a1 a2

ac2ac1

1 2 3

0 1 2

4 5 6

0 1 2

m()

main()

Reference Passing in Memory (3)
•Memory contents after execution of line 3:

a1 a2

ac2ac1

7 2 3

0 1 2

4 5 6

0 1 2

8 9 0

0 1 2

m()

Part 3: String (not not the
balloon ones this time)

String
•A commonly used reference type in Java is a String
•A String can be used to store an ordered list of char
•A String is a type of Java Object. An Object in Java is simply any
thing that a reference type can refer to (in other words, anything that is
a “balloon” is an Object)
•Normally, to create an Object, you must write “new”

There are many special things about Strings. For starters, you can
create a String by putting text between “ “ w/o using “new”

String s = “foo”;

creates a String.

String
You also could create a String using the new operator:

String s = new String(“foo”); /*creates a new String based on the
literal “foo” */
String a = new String(s); /*creates a 2nd new String based on the first
String */

Every time you use the new keyword, you are creating a new Object.

In the case of String, when you write new String(s) you are creating a
new String based on the old String (it will have the same contents).

Attributes of Objects
Objects in Java can have certain attributes

You can access these attributes using the . operator

For example, an attribute of an array is the length attribute. If I have an
array, I can write

arrayname.length

to access the attribute length of an array.

Behaviors or Methods of Objects
Objects in Java can also have methods or behaviors which act upon the
Object

You can also access these methods using the . operator

Any String object has a behavior defined on it that calculates its length:

String s = “foo”;
int length = s.length();

Notice that length has () after it because length is a behavior not an
attribute

Other Behaviors of String

charAt()
length()
substring()
concat()
indexOf()
.....

You are not responsible for knowing most of these other than charAt()
and length() but you ARE responsible for knowing how to look up more
about them
http://download.oracle.com/javase/6/docs/api/java/lang/String.html

http://download.oracle.com/javase/6/docs/api/java/lang/String.html

Part 4: Multidimensional
Arrays

Two-Dimensional Arrays (1)
•So far, the elements of all the arrays we have seen have been
simple values: primitive types or Strings
–Such arrays are one-dimensional

•However, we can create arrays whose elements are themselves
one-dimensional arrays
–Such an array is really an array of arrays
–These arrays are two-dimensional arrays (or 2D arrays)

•Elements in a two dimensional array are accessed using two
indices
–The first index specifies the one-dimensional array containing the element
we want to access

Two-Dimensional Arrays (2)
–The second index specifies the element we want to access within the one-
dimensional array specified by the first index

•It may be useful to think of two-dimensional arrays as tables of
values with rows and columns
–The first index specifies a row or column
–The second index specifies an element within a row or column

2D Array Declarations (1)
•The declaration for a two-dimensional array has the same basic
syntax and semantics as the declaration of a one-dimensional
array
•The only difference is that there are two pairs of square brackets
([]) instead of just one
•Examples:

double[][] matrix;
char[][] mysteryWord;

•We can also declare two-dimensional arrays by placing the
square brackets after the variable name instead of after the type

double table[][];

2D Array Declarations (2)
–Again, placing the brackets before the type is the preferred declaration style

•More array declaration examples:
–double[][] distances, prices;
Declares two variables of type double[][]; one is called distances and
the other is called prices
–double distances[][], totalPrice;
Declares a variable of type double[][] called distances, along with a
single variable of type double called totalPrice
–double[] distances[], averages;
Declares a variable of type double[][] called distances, along with a
variable of type double[] called averages

2D Array Allocations (1)
•We can allocate a two-dimensional array using the same basic
syntax as when we allocate a one-dimensional array
•The only difference is that we can specify two sizes
–The first size specifies the number of one-dimensional arrays that the array
of arrays will contain
–The second size component specifies the number of elements in each one-
dimensional array

•For example, if a variable of type int[][] called numbers has
already been declared, we can allocate a two-dimensional array
of int and store its address in variable numbers like this:

matrix = new int[3][5];

2D Array Allocations (2)
–This allocates an array that can store 3 elements, each of which is the
address of an array of ints
–Each of these 3 arrays of ints can store 5 elements, each of which is of type
int

numbers 0

0 0 0

00

0

0

0

0

1

0

2

3 4

0 1 2 3 4

0 0 0 0 0

0 1 2 3 4

10 2

Accessing 2D Array Elements
•We can access the individual elements of a two-dimensional
array by using two indices, between two sets of square brackets
–The first index specifies the one-dimensional array which contains the
element we want to access
–The second index specifies the element we want to access within the one-
dimensional array specified by the first index

•The individual elements of a two-dimensional array can be used
in the same manner as regular variables of the same type
•We can also access an entire one-dimensional array by
specifying only one index between a pair of square brackets
–When we do this, the one-dimensional array can be used in the same manner
as a regular one-dimensional array

2D Array Access Example (1)
•For example, suppose we have the following array declaration /
allocation statement:

int[][] numbers = new int[3][5];

•Consider the expression numbers[1][3]
–The above expression refers to the element at position 3 of a one-
dimensional array of ints
–This one dimensional array of ints is stored in position 1 of a two-
dimensional array of ints
–The address of this two-dimensional array of ints is stored in variable
matrix

2D Array Access Example (2)
•Consider the expression numbers[1]
–This expression refers to the element at position 1 of a two-dimensional
array of ints
–This element is an entire one-dimensional array of ints
–Its type is int[], and therefore can be used in the same manner as a regular
variable of type int[]

2D Array Access Example (3)
numbers[1][3] = 7;

numbers 0

0 0 0

00

7

0

0

0

1

0

2

3 4

0 1 2 3 4

0 0 0 0

0 1 2 3 4

10 2

numbers[2][4] = numbers[1][3] - 2;

5

2D Arrays and length Fields (1)
•Because a two-dimensional array is an array of arrays, the
actual value of the length field depends on the array whose
length is being accessed
–The expression variableName.length specifies the number of one-
dimensional arrays in the two-dimensional array whose address is stored in
variable variableName
–The expression variableName[index].length refers to the maximum
number of individual elements in the one-dimensional array whose address is
stored at position index of the two-dimensional array whose address is stored
in variableName

2D Array and length Fields (2)

int size = numbers.length;

numbers 0

0 0 0

00

7

0

0

0

1

0

2

3 4

0 1 2 3 4

0 0 0 0

0 1 2 3 4

10 2

int rowSize = numbers[0].length;

5
size

rowSize

3

5

2D Arrays and Initializer Lists (1)
•Initializer lists can be used to initialize two-dimensional arrays
upon declaration
–The basic syntax, semantics, and restrictions are the same as when an
initializer list is used to initialize a one-dimensional array

•The only difference is that each element in the initializer list for
a two-dimensional array is itself the initializer list for a one
dimensional array
•The following statement declares an allocates a two-
dimensional array of int called grid:

int[][] grid = {
{1, 2, 3},
{2, 4, 6}

}

2D Array and Initializer Lists (2)
–grid contains 2 one-dimensional arrays as elements
–Each of these one-dimensional arrays contains 3 values of type int

grid 321

1

0

2 4 6

0 1 2

10 2

Variation: Jagged Arrays (1)
•In a two-dimensional array, each one-dimensional array can
have a different length
–Such arrays are called jagged arrays, or ragged arrays

•We can accomplish this by not assigning a length to the one-
dimensional arrays when we create the two-dimensional array,
like this:

variableName = new type[size][];

No size information

Variation: Jagged Arrays (2)
•The previous statement allocates an array which can hold the
addresses of size one-dimensional arrays, and stores its address
in variableName, of type type[][]
•However, none the one-dimensional arrays themselves are
allocated by the above statement, and their size is unknown
•The one-dimensional arrays are allocated one-by-one normally
in separate steps
–Their sizes do not have to be equal, and are totally arbitrary

•Actual use of jagged arrays is uncommon

Jagged Array Example (1)
numbers = new int[3][];

numbers

1

0

2

Jagged Array Example (2)
for(int i = 0; i < numbers.length; i++)

numbers

0 0

0

1

0

2 0 1

0 0 0

0 1 2

0

numbers[i] = new int[i+1];

i 3

Multidimensional Arrays (1)
•Multidimensional arrays are a more general case of two-
dimensional arrays
•Syntactically, multidimensional arrays work just like two-
dimensional arrays, except for the fact that they have more
dimensions
–All syntactic rules for one-dimensional arrays and two-dimensional arrays
generalize to handle more dimensions
–These generalizations are based on the idea that the number of square
bracket pairs specifies the number of dimensions
–For example, when accessing an element in a multidimensional array, we
must specify as many indices between square bracket pairs as the array has
dimensions

Multidimensional Arrays (2)
–If the multidimensional array has n dimensions, then specifying m
dimensions will refer to an (n-m)-dimensional array

•Multidimensional arrays can be perfectly rectangular, or they
can be jagged
•Actual use of "pure" arrays with more than 2 dimensions is rare

