
COMP-202
Unit 3: Conditional

Programming

CONTENTS:
The if and if-else Statements
Commenting
Library methods
Boolean Expressions

COMP-202 - Conditional Programming 2

Control Flow

•The default order of statement execution through a
method is linear: one statement after the other, in the
order they are written (from the top of the page down
towards the bottom)
•Some programming statements modify that order,
allowing us to:
–decide whether or not to execute some statements, or
–perform some statements over and over repetitively
•The order of statement execution is called control flow or
flow of control

COMP-202 - Conditional Programming 3

Control Flow: Sequence

•In the sequence structure, statements are
executed in the order they appear in the code

COMP-202 - Conditional Programming 4

Control Flow: Conditional
•In the conditional structure, one of two
courses of action is taken depending on
whether a condition is true or false

condition

(rest of the program)

truefalse

COMP-202 - Programming Basics 5

if statements in Java

if (condition){
 //do something only if condition is true
}
//code goes here no matter what

condition can refer to any boolean expression

This means anything that evaluates to be true
or false

COMP-202 - Programming Basics 6

if statements in Java : Example

if (x > 0){
 System.out.println(“positive”);
}

COMP-202 - Programming Basics 7

if statements in Java : Example

if (calculateComp202Grade() > 85){
 System.out.println(“Cool!”);
}

Here the condition is still a boolean expression.
It means, “is the return value of the method
calculateComp202Grade() greater than 85”

COMP-202 - Programming Basics 8

if statements in Java : Example

if (calculateComp202Grade() > 85){
 System.out.println(“Cool!”);
}

The code inside the { } of the if statement is
only executed if the condition is true.

The code afterwards is executed no matter
what.

COMP-202 - Programming Basics 9

if statements in Java : Example

int x = 4;

if (Math.pow(x+1,2) > 16) {
 System.out.println(“OK”);
}

COMP-202 - Programming Basics 10

if / else

Sometimes, you will have some code that you
want to be executed if the condition is true and
other when it is false

Option 1: 2 if statements using a !

Any time you have a boolean expression, you
can get the opposite value of it by writing !
before it.

COMP-202 - Programming Basics 11

if / else

So, for example, ! (x > 0) is the same thing as x
<= 0

Using this, I could do the following:

COMP-202 - Programming Basics 12

if / else

if (x > 0) {
 System.out.println(“It is positive”);
}
if (! (x > 0))
 System.out.println(“It is negative”);
}

COMP-202 - Programming Basics 13

if / else

This code is a bit cumbersome:

1)There is no obvious link between the 2
statements. Someone looking at the code
wouldn't know
2)Since there is no link, if we had a more
complicated statement there, it could end up
that BOTH statements happened.

COMP-202 - Programming Basics 14

if / else

if (condition) {
 // happens if condition is true
}
else {
 // happens if condition was false
}
//happens no matter what

COMP-202 - Programming Basics 15

An example of the difference:

int x = 3;
if (x > 0) {

System.out.println(“Positive.Now resetting”
+ “it's value.”);

x = 0;
}

if (! (x > 0)) {
System.out.println(“Not positive”);

}

COMP-202 - Programming Basics 16

An example of the difference:

int x = 3;
if (x > 0) {

System.out.println(“Positive.Now resetting”
+ “it's value.”);

x = 0;
}
else {

System.out.println(“Not positive”);
}

COMP-202 - Programming Basics 17

An example of the difference:

In the first case, both if statements get
executed because the value of the condition is
true at both points.

However, with the if/else, only the first if is
executed. The else is not, because the condition
was evaluated at the beginning. If it isn't true at
first, then the else never is entered.

COMP-202 - Programming Basics 18

A fair game!

String coin = getARandomFlip();
if (coin.equals(“heads”)){
 System.out.println(“I Win!”);
}
else {
 System.out.println(“You lose!”);
}

COMP-202 - Programming Basics 19

if /else if /else

Sometimes, you will have a more complicated
thing where there are more than 2 options.

Option one: Nested if statements:

if (option1) { }
else {

if (option 2) { }
else {

if (option 3) { } } }

COMP-202 - Programming Basics 20

if /else if /else

A better way to do this is using “else if”

if (condition1) {
}
else if (condition2) {
}
else if (condition 3) {
}
else {
}

COMP-202 - Programming Basics 21

if /else if /else

Much like else, the “else if” is only entered if the
prior conditions were false.

So there is a big difference if we change the
order of the if / else if statements.

COMP-202 - Programming Basics 22

if /else if /else

if (x > 0){
 System.out.println(“positive”);
}
else if (x >-1) {
 System.out.println(“<-1 but <0”);
}
else {

System.out.println(“zero”);
}

COMP-202 - Programming Basics 23

if statements in Java : Example

if (x > 0){
 System.out.println(“positive”);
}
else if (x >-1) {
 System.out.println(“>-1 but <=0”);
}
else if (x > -2) {

System.out.println(“>-2 but <= -1”);
}
else {

System.out.println(“zero”);
}

COMP-202 - Programming Basics 24

if statements in Java : Example

if (x > 0){
 System.out.println(“positive”);
}
else if (x >1) {
 System.out.println(“This statement is unreachable!”);
}
else {

System.out.println(“zero”);
}
Why is the highlighted section impossible to get to?

COMP-202 - Introduction 25

Comments : Single line
A comment is something only used by the programmer.

If you write

//

anywhere in the code, the rest of the line is ignored by
the compiler.

COMP-202 - Introduction 26

Comments : Multi-line
A comment is something only used by the programmer.

If you write

/*

anywhere in the code, then the rest of the code is
ignored by the compiler until it sees

*/

COMP-202 - Introduction 27

Comments : Purposes
Comments are generally used to help the programmer

understand what he's doing.

This is useful both for when other people read your code
or if you go back to your code at a later point.

COMP-202 - Introduction 28

Good Comments
A good comment will make it clear what a complicated

piece of code will do.

A bad comment will either mislead the user or provide
unnecessary information (i.e. over commenting)

COMP-202 - Introduction 29

Comments
//
// Dear maintainer:
//
// Once you are done trying to 'optimize' this program,
// and have realized what a terrible mistake that was,
// please increment the following counter as a warning
// to the next guy:
//
// total_hours_wasted_here = 39
//

COMP-202 - Introduction 30

Comments
 /* <summary>
 Class used to work around Richard being a @#*$ idiot
 </summary>
 <remarks>
 The point of this is to work around his poor design so that paging
will
 work on a mobile control. The main problem is the
BindCompany() method,
 which he hoped would be able to do everything. I hope he dies.
 </remarks> */

COMP-202 - Introduction 31

Comments
// sometimes I believe compiler ignores all my comments

COMP-202 - Introduction 32

Comments
// drunk, fix later

COMP-202 - Introduction 33

Comments
/*
 * You may think you know what the following code does.
 * But you dont. Trust me.
 * Fiddle with it, and youll spend many a sleepless
 * night cursing the moment you thought youd be clever
 * enough to "optimize" the code below.
 * Now close this file and go play with something else.
 */

COMP-202 - Introduction 34

Comments
// if i ever see this again i'm going to start bringing guns to
// work

COMP-202 - Programming Basics 35

Java Libraries

The Java Sdk comes with many libraries which contain
classes and methods for you to use. These are not
technically part of the language, but they are types of
classes that others have written to extend Java and come
with Java.

Some of these include:

-a Math library
-String library
-Graphics library
-Networking library

COMP-202 - Programming Basics 36

Java Libraries

You can find a list of libraries in Java 6
http://download.oracle.com/javase/6/docs/api/index.html?overview-summary.html

To use a library, first find the name of the library you wish
to use. For example, the first library at the link has the
name

java.applet

Then, write at the top of your program

import name;

http://download.oracle.com/javase/6/docs/api/index.html?overview-summary.html

COMP-202 - Programming Basics 37

Example: Reading from
Keyboard

One example is to read information from the keyboard that
a user enters. There are methods that do this defined in
the class

http://download.oracle.com/javase/6/docs/api/java/util/Scanner.html

To use the Scanner class in your program, write at the top

import java.util.Scanner;

(you can also write import java.util.*; if you want)

http://download.oracle.com/javase/6/docs/api/java/util/Scanner.html

COMP-202 - Programming Basics 38

Example: Reading from
Keyboard

To use the Scanner class, after writing the
import statement above, you simply declare a
variable of type Scanner.

Scanner can work to read both files and from the
keyboard, so when you create a Scanner class variable,
you tell it where to scan.

Scanner has defined in it methods that will do things
such as search for the next integer.

COMP-202 - Programming Basics 39

RTFM

One of the best ways to learn about various methods
that exist in classes such as this, is by reading the
documentation.

Speaking of this, some of you may be wondering what
the title stands for....To find that out, RTFM

COMP-202 - Programming Basics 40

Example: Reading from
Keyboard

import java.util.Scanner;

public class ReadInput {
 public static void main(String[] args) {
 Scanner s = new Scanner(System.in);
 System.out.println(“Enter a number”);
 int number = s.nextInt();
 System.out.println(“You entered the number ” + number);
 }
}
Exercise to try: What will happen if the user enters
letters instead of a number? What can we do about
this?

COMP-202 - Programming Basics 41

Exercise: Computing the
Pythagorean theorem

Write a program that does the
following:

1)Reads two doubles as input from the user
2)Calls a method that computes the hypotenuse of a
right triangle with those 2 entered numbers as sides.
(The function should return a double)
3)Print the result
Hint: The square root method can be found in a class
java.lang.Math

COMP-202 - Programming Basics 42

Exercise: Absolute value

Write a program that does the
following:

1)Reads an integer from the user
2)Calls a method that computes the absolute value of
the integer.
3)Calls the absolute value method defined in
java.lang.Math on the integer
4)Print the result of each method and make sure they
are the same

Part 1: Boolean Expressions --

(a.k.a. the things you put in if
statements and other things as

conditions)

COMP-202 - Programming Basics 44

Boolean Expressions: True or
False

Expression Value
2010 is an odd number F
Elvis Presley died in
1977.

T

Elvis Presley was born
in the United States and
had red hair.

F

COMP-202 - Programming Basics 45

Boolean Expressions
•Instead of evaluating to a numeric value,
boolean expressions evaluate to either true
or false

myNumber > 0 // can be either true or false

•You can assign the result of a boolean expression to a variable
of type boolean:

boolean positive;
positive = (myNumber > 0);

COMP-202 - Conditional Programming 46

Boolean Expressions in Java
•A boolean expression is a combination of
operators and operands, and it evaluates to
a boolean value
•A boolean expression can be:
–The comparison of two values using a comparison operator
–A variable which has type boolean
–A call to a method that returns a type boolean
–true or false (Java's boolean literals)
–The negation of another boolean expression using the ! operator
–The combination of two or more other boolean expressions using the
&& or || operators

COMP-202 - Programming Basics 47

Boolean Expressions
with Comparison Operators

Expression Meaning Value
5 == 2 5 is equal to 2 F
! (10 >= 5 10 is greater or

equal to 5
T

 -2 < 4 -2 strictly less than
4

T

COMP-202 - Programming Basics 48

Boolean Expressions
with Logical Operators
Expression Meaning Value

x != 5 && y > 2 x is not equal to 5
and y is greater
than 2.

Depends
on

x and y

! (10 == 5) The negation of
“10 is equal to 5”

T

 1 < 0 || 1 > 0 1 is less than 0 or
1 is greater than 0

T

COMP-202 - Programming Basics 49

More Boolean Expressions
Expression Meaning Value

true Something that is
always true.

T

! false The negation of
something that is
always false.

T

COMP-202 - Conditional Programming 50

Comparison Operators (1)
The result of a comparison is always true or false

Used to compare numeric or character values
== : equal to

!= : not equal to

< : less than

> : greater than

<= : less than or equal to

>= : greater than or equal to

COMP-202 - Conditional Programming 51

Comparison Operators (2)
•Equality (==) and inequality (!=) operators apply to values
that have any type
•The other comparison operators (<, <=, >, >=) only apply
to values which have a numeric type (byte, short, int,
long, float, double) or that have type char
•If the operands of a comparison operator have different types,
the operand whose type has lower precision gets promoted to the
other operand's type

COMP-202 - Conditional Programming 52

Comparison Operator
Precedence

•Comparison operators have
– lower precedence than arithmetic operators
– higher precedence than the assignment operator

•
boolean b = a > c * d + e;

1 234

1. The product of c and d is evaluated first

2. Then, the value of c * d is added to e

3. Then, the value of c * d + e is compared to the value of a

4. Finally, the result of the comparison is stored in variable b

COMP-202 - Conditional Programming 53

Character Comparisons (1)

•In Java, each character (like '?' or 'm') is associated with a
number.
•The following expression evaluates to true because the
number assigned to the character '+' by the Unicode
character set is lower than the number assigned to the
character 'J' by the same character set:

boolean lessThan = '+' < 'J';

•Do not hesitate to use this property of characters in your
programs.

COMP-202 - Conditional Programming 54

Floating Point Comparisons (1)

•You should rarely use the equality operator (==) when
comparing two floating point values (float or double)
•In many situations, you might consider two floating point
numbers to be "close enough" even if they aren't exactly equal

– Better approach: check if their difference is less than a
certain threshold

COMP-202 - Conditional Programming 55

Floating Point Comparisons:
Example

•
// Assuming f1 >= f2
difference = f1 - f2;
boolean essentiallyEqual = difference < 0.00001;

COMP-202 - Conditional Programming 56

Logical Operators
•Boolean expressions can also use the following logical
operators:

! Logical NOT

|| Logical OR

&& Logical AND

•All three operators take operands of type boolean and
produce results of type boolean

COMP-202 - Conditional Programming 57

Truth Tables
•The possible values of boolean expressions can be shown
using truth tables
•A truth table contains all possible combinations of values
for the terms in the expression
•The value of the expression for each combination is also
shown
•Below is the truth table for boolean expression !a

a

true

false

!a

false

true

COMP-202 - Conditional Programming 58

Exercise : More Complex

What would be the truth table for

(a && b) || ! (c && b)

That is to ask, what values of a,b, and
c will make it so the above is true and
what values will make it so it is false

COMP-202 - Conditional Programming 59

Logical Operator Precedence
(1)

•Like arithmetic operators, logical operators have
precedence rules among themselves

1) !
2) &&
3) ||

•

a || b && !c

123 1. First, the negation of c is evaluated

2. Then, b is "AND-ed" with the value of !c

3. Finally, a is "OR-ed" with the value
of b && !c

COMP-202 - Conditional Programming 60

Logical Operator Precedence
(2)

•Logical operators have
– lower precedence than comparison operators
– higher precedence than the assignment operator

•

boolean b = a && c < d;

123

COMP-202 - Conditional Programming 61

if Statement trap

If you don't put { after the if statement,
Java compiler will assume you only
want 1 line inside your if statement.

COMP-202 - Conditional Programming 62

if Statement trap
if (x > 0)
 System.out.println(“this is part of the if”);
 System.out.println(“This is not”);

COMP-202 - Conditional Programming 63

if Statement trap

Another thing to be careful of is not to put a ; after the
if statement. Always put a { instead.

What would happen if you just put a ; by mistake?

COMP-202 - Conditional Programming 64

if Statement Example 2
•

The statements between braces { } form a block.

Whenever you want more than one statement to
be executed as part of an “if” statement, use
braces create a block.

COMP-202 - Conditional Programming 65

 Exercise:
What will be displayed if this code

executes?

int x = 0, y = 0;
if (y > 0 && y < 5 || !(x != 2))
System.out.println("yes");
System.out.println("congratulations!");

COMP-202 - Conditional Programming 66

How The Java Compiler
Evaluates && and | |

●If left operand of a && expression evaluates to fal s e, the
remaining operands are not evaluated

• In p1 && p2, if p1 is false, p2 is never looked at.

●If left operand of a | | expression evaluates to tr ue, the
remaining operands are not evaluated

• In p1 || p2, if p1 is true, p2 is never looked at.
•

• This is called “short-circuit” evaluation.

COMP-202 - Conditional Programming 67

Aside: How The Java Compiler
Evaluates && and | |

This is useful in the following case. Suppose you have an int
variable x and you aren't sure if x is equal to zero or not.

if (x != 0 && 1 / x < 5)

COMP-202 - Conditional Programming 68

Example: Bad Style
•

• boolean tall = height > 6.0;
• if(tall == true) x = 5;

COMP-202 - Conditional Programming 69

Example: Bad Style
Leads to a Common Error

•

• boolean tall = height > 6.0;
• if(tall = true) x = 5;

COMP-202 - Conditional Programming 70

Example: Bad Style
Leads to a Common Error

•

• boolean tall = height > 6.0;
• if(tall = true) x = 5;

This sets tall to true, so “x = 5” always executes,
regardless of the value of height.

This is a logical error: compiler will not detect it!

COMP-202 - Conditional Programming 71

Example: Good Style
Eliminates Possibility of

Common Error

•

• boolean tall = height > 6.0;
• if(tall) x = 5;

COMP-202 - Conditional Programming 72

Nested if statements
•

• Sometimes, you will put if statements
inside of each other. This gets a bit
confusing when you have else
statements. For example, which else
does something belong to?

COMP-202 - Conditional Programming 73

Nested if Statements (2)
•One can write nested if-else statements like
this:
 if (condition1)

if (condition2)
statement1;

else
statement2;

else
if (condition3)

statement3;
else

statement4;

COMP-202 - Conditional Programming 74

Each e l s e paired with most recent
uninterrupted i f in same block

•

• if(x != 0) width = x + 5;
• x = 2;
• else {
• width = x + 10;
• x = x + 1;
• }

COMP-202 - Conditional Programming 75

•

• if(x != 0) width = x + 5;
• x = 2;
• else {
• width = x + 10;
• x = x + 1;
• }

Compile-time error:
e l s e isn't associated
with any i f statement.

x = 2; “interrupts” the
if on the first line.

Each e l s e paired with most recent
uninterrupted i f in same block

COMP-202 - Conditional Programming 76

if(width > 0) {
 if(x != 0) width = x + 5;
 x = 2;
}
else {
 width = x + 10;
 x = x + 1;
}

Each e l s e paired with most recent
uninterrupted i f in same block

COMP-202 - Conditional Programming 77

if(width > 0) {
 if(x != 0) width = x + 5;
 x = 2;
}
else {
 width = x + 10;
 x = x + 1;
}

Each e l s e paired with most
recent uninterrupted i f in same

block

COMP-202 - Conditional Programming 78

if(width > 0) {
 if(x != 0) width = x + 5;
 X = 2;
}
else {
 width = x + 10;
 x = x + 1;
}

This i f and this
e l s e are in
different blocks,
so they are not
paired together.

Each e l s e paired with most recent
uninterrupted i f in same block

COMP-202 - Conditional Programming 79

Nested if Statements:
Exercise

•Complete the main() method of the MinOfThree
class by adding code which determines
which of the three numbers entered by the
user is the smallest number, and displays
that number
•Can you write this code both with and
without using block statements?

COMP-202 - Conditional Programming 80

MinOfThree.java
•
•
import java.util.Scanner;

public class MinOfThree {
 public static void main(String[] args) {
 Scanner keyboard = new Scanner(System.in);
 int num1, num2, num3, min;

 System.out.print("Enter a number: ");
 num1 = keyboard.nextInt();
 System.out.print("Enter another number: ");
 num2 = keyboard.nextInt();
 System.out.print("Enter a third number: ");
 num3 = keyboard.nextInt();

 // Add your code here
 }
}

Advanced Conditional
Statements (not examinable)

1) The switch statement
2) The conditional operator

COMP-202 - Conditional Programming 82

The “switch” statement:
example

•

•

int x,y;
switch(x+y){
 case 5: System.out.print(“A”);
 case 8: System.out.print(“B”);
 System.out.print(“F”);
 case 1: System.out.print(“C”);
 default: System.out.print(“D”);
}

COMP-202 - Conditional Programming 83

The “switch” statement
• int x,y;
• switch(x+y){
• case 5: System.out.print(“A”);
• case 8: System.out.print(“B”);
• case 1: System.out.print(“C”);
• default: System.out.print(“D”);
• }

Case values must
be literals or
constants; all of
same type as
“test expression”.

COMP-202 - Conditional Programming 84

What will this display?
●

int section = 4;

switch(section) {
 case 1:
 System.out.println("A");
 default:
 System.out.println("B");
 case 2:
 case 3:
 System.out.println("C");
 System.out.println("4");
}

COMP-202 - Conditional Programming 85

 “switch” statement with
“break”

• int x,y;
• switch(x+y){
• case 5: System.out.print(“A”);
• break;
• case 8: System.out.print(“B”);
• System.out.print(“F”);
• case 1: System.out.print(“C”);
• break;
• default: System.out.print(“D”);
• }

COMP-202 - Conditional Programming 86

What will this display?
int section;

System.out.print("Enter your COMP-202 section: ");
section = keyboard.nextInt();

switch(section) {
 case 1:
 System.out.println("Your section number is not prime.");
 break;
 case 2:
 case 3:
 System.out.println("Your section number is prime.");
 break;
 default:
 System.out.println("There must be lots of students!");
}

COMP-202 - Conditional Programming 87

What will this display?
int section;

System.out.print("Enter your COMP-202 section: ");
section = keyboard.nextInt();

switch(section) {
 default:
 System.out.println("There must be lots of students!");
 case 1:
 System.out.println("Your section number is not prime.");
 break;
 case 2:
 case 3:
 System.out.println("Your section number is prime.");
 break;
}

COMP-202 - Conditional Programming 88

Summary of switch Statements
•The expression of a switch statement must evaluate to a
value of type char, byte, short or int; it cannot be a
floating point value, a long, a boolean, or any reference
type, including String

•Note that the implicit boolean expression in a switch
statement is equality
–The switch statement tries to match the expression with a value (it
is never <, <=, >, nor >=)

•You cannot perform relational checks with a switch
statement
•The value of each case must be a constant (either a literal
or a final variable)
–It cannot be a plain (that is, non-final) variable

COMP-202 - Conditional Programming 89

The Conditional Operator
•

condition ? expression1 : expression2

•
•
•If condition evaluates to true, then expression1 is
evaluated; if it evaluates to false, then expression2 is
evaluated

COMP-202 - Conditional Programming 90

Conditional Operator Examples
(1)

•
larger = (num1 > num2) ? num1 : num2;

•
•If num1 is greater that num2, then num1 is assigned to
larger; otherwise, num2 is assigned to larger

COMP-202 - Conditional Programming 91

Conditional operator vs. if-else

●The conditional operator is like an if-else statement,
except that instead of executing one of two possible
branches, it evaluates to one of two possible values.

l ar g e r = (num1 > num2) ? num1 : num2;

i f (num1 > num2)
l ar g e r = num1;

e l s e
l ar g e r = num2;

...is the same as:

COMP-202 - Conditional Programming 92

Conditional Operator Examples
•

System.out.println ("Your change is " +
count + " dime" +
((count == 1) ? "" : "s"));

•

•If count evaluates to 1, then "dime" is printed

•If count evaluates to any value other than 1, then an "s"
is added at the end of "dime"

COMP-202 - Conditional Programming 93

●Exercise:
●Use the conditional operator to
●express “absolute value”.
●

●Absolute value examples:
●The absolute value of 6 is 6.
●The absolute value of -1 is 1.

COMP-202 - Programming Basics 94

Constants (1)

A constant is like a variable except that it holds one value
for its entire existence

The compiler will issue an error if you try to assign a value to a
constant more than once in the program

COMP-202 - Programming Basics 95

Advantages of Constants
•
•
Constants can make programs easier to understand
Constants facilitate changes to the code
Constants prevent inadvertent errors

