
Suppose I have the following classes:
public interface Talker {
 public void Talk(int x);
}

public class Repeater implements Talker {
public void Talk(int x) {

 System.out.println(x + “is” + x);
 }
}

public class RepeatShouter extends Repeater{
public void Talk(int x) {
 System.out.println(“LOUD “ + x + “” + x);
}
public void Foo() { }
}

Which of the
following will
compile and what
will they print?

Talker a = new Talker();

Talker b = new Repeater();
b.Talk(3);

Talker c = new RepeatShouter();
c.Foo();

Repeater d = new RepeatShouter();
((RepeatShouter)d).Foo();

Last week:

-Inheritance
-Polymorphism
-Interfaces

This Week:

-Reading and writing from and to files
-Try/Catch statements
-Scope of variables

Reading and Writing From a File

Reading and Writing To and From a
File is very similar to reading and
writing to and from the keyboard
and screen.

Reading and Writing From a File

To read from a file, we will use the
Scanner class

To do this, we will do the same
thing as to read from the keyboard,
except instead of telling the Scanner
to look at the keyboard, we will tell
it where the file is.

System.in

1)Inside the class System, there is a
static attribute called “in”

2)System.in is of type
“InputStream”

System.in

3)Scanner s = new Scanner(System.in);

4)This tells us we can create a Scanner
based on an InputStream

5)Once we have the Scanner created it
doesn't matter how it was created as far
as the way we'll use it

Calling the Scanner constructor

There are generally two input types to
the Scanner constructor:

1)InputStream
2)File

Calling the Scanner constructor

What we want to be able to do is
convert a “path” (i.e.
C:\documents\foo.txt) to a File object.
Once we do that, we can convert the
File object to a scanner using the
constructor.

Calling the Scanner constructor

If we look at the File constructor, we'll
see there is a method that takes as input
a String representing a path and creates
a File.

Calling the Scanner constructor

Combining these, we have:

File f = new
File(“C:\documents\foo.txt”);
Scanner s = new Scanner(f);

Calling the Scanner constructor

Or

Scanner s = new Scanner(new
File(“C:\documents\foo.txt”);

Eek! Careful!

Scanner s = new Scanner(new
File(“C:\documents\foo.txt”);

The above uses the “escape characters”
This is not what we want. So we'll have
to do
Scanner s = new Scanner(new
File(“C:\\documents\\foo.txt”);

Reusability

Once we have set up the scanner, we
can use it the same way we used the
Scanner to read from the keyboard.

s.nextInt();
s.next();
s.nextLine();
etc

Closing a Scanner
After you are finished reading from a
file, you must close the file. This lets
the OS clean up things. You can do this
by writing

s.close()

If you don't do this, changes to the file
may not be saved!

Try / Catch error :(

The constructor for Scanner listed
shows the following :

public Scanner(File source)
 throws FileNotFoundException

Try / Catch error :(

public Scanner(File source) throws
FileNotFoundException

What this means is we have to put the
call to this constructor inside of a
Try/Catch statement. Otherwise there is
a compiler error

 Try / Catch

try {
//some commands

}
catch (typeofexception e) {

//do something
}
//rest of code

try {
//some commands

}
catch (typeofexception e) {

//do something
}
//rest of code

First the computer will “try”
to do whatever is in the “try”
statement.

There are 3 cases:
1)It works
2)It fails because of an error
“typeofexception”
3)It fails because of a
different error

try {
//some commands

}
catch (typeofexception e) {

//do something
}
//rest of code

If it succeeds, it will execute
everything inside of the try
and then go to the part “rest
of code,” skipping over the
catch block

try {
//some commands

}
catch (typeofexception e) {

//do something
}
//rest of code

If it fails because of an error
of type “typeofexception” it
will immediately jump to the
catch block. It will then do
whatever is in the catch
block and then continue with
“rest of code” (unless the
catch block has a return
statement or something)

try {
//some commands

}
catch (typeofexception e) {

//do something
}
//rest of code

If it fails because of an error
that is not of type
“typeofexception” your
program will crash as normal
with a run-time error

typeofexception:

There are many types of exceptions:

IOException
FileNotFoundException
NumberFormatException
Exception

These various types of exceptions have
a hierarchy of “is-a” relationships as
well.

For example a FileNotFoundException
“is-a” IOException “is-a” Exception

try {
//some commands

}
catch (typeofexception1 e) {

//do something
}
catch (typeofexception2 e) {

}

When you have 2 catch
statements attached to one
try, the Java run time
environment will figure out
which type of exception was
“thrown” and go to that one.

try {
//some commands

}
catch (Exception e) {
}
catch (FileNotFoundException e) {
//this code never happens since a
//FileNotFoundException “is-a”
//Exception
}

Note that in this case only
the first matching catch is
executed

try {
//some commands

}
catch (typeofexception1 e) {

//do something
}
finally {
}

Sometimes you will have
code that you want to happen
after both the try and the
catch no matter what. You
want this code to happen
even if the try or the catch
statement had, for example, a
return statement in them or
threw another error

try {
//some commands

}
catch (typeofexception1 e) {

//do something
throw e;

}
finally {
}

Sometimes you will want to
“throw an exception” for
different reasons. To do this,
use the keyword throw

public class MisleadingError {
 public static void main(String[] args) {
 throw new
ArrayIndexOutOfBoundsException(1);
 }
}

public class MisleadingError {
 public static void main(String[] args) {
 throw new
ArrayIndexOutOfBoundsException(1);
 }
}
daniels-computer:~ daniel$ java MisleadingError
Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: Array index out
of range: 1
 at MisleadingError.main(MisleadingError.java:3)

Suppose I have the following classes:
public class Crasher {
public void Boom(int x) {

 throw new Exception(“PARENT”);
 }
}

public class BigCrasher extends Crasher{
public void Boom(string x) {
throw new Exception(“STRING BOOM!”);
}
public void Boom(int x) {

throw new Exception(“INT BOOM”);
 }
 public void Boom(double x) {

throw new Exception(“DOUBLE
BOOM”);
}
public void Boom(Object o) {

throw new Exception(“OBJECT
BOOM!”);
}
}

Crasher c = new
BigCrasher();
try {
 c.Boom(3);
}
catch (Exception e) {

System.out.println(e.getMe
ssage();
}
try {
 ((BigCrasher)c).Boom(3
+ “ “);
}
catch (Exception e) {

System.out.println(e.getMe
ssage();
}

Try / Catch error :(

The constructor for Scanner listed
shows the following :

public Scanner(File source)
 throws FileNotFoundException

Checked vs Unchecked Exceptions
When a method header has “throws
_____” in it, it means it is a checked
exception.

This means when you call the method,
you must add a catch statement to
catch at least that sort of Exception, OR
alternatively, YOU can add the “throws
_____” to your code

Checked vs Unchecked Exceptions
Any time you throw an Exception that
is NOT a RuntimeException (e.g.
ArrayOutOfBounds) you MUST add
throws to your method header.

Note: There are also Errors such as
OutOfMemory that are not considered
Exceptions. These are unchecked so
you don't need to add a catch

Exceptions vs Fixing the Error
A good way to think about exceptions:

In general to avoid our program
crashing we can do one of two things:

1)Fix the error (i.e. check if something
is null or an index of an array is in
bounds)
2)Catch the exception

Exceptions vs Fixing the Error

Usually, when we can, we like to use
the first method of avoiding the error in
the first place. This is what we have
been doing for the most part in this
course

Exceptions vs Fixing the Error
Sometimes though, it is impossible to
easily fix an error such as this for a few
reasons:

1)Hard to predict what will happen (e.g.
user entering a double when we are
looking for an int)
2)The error is a normal behavior (e.g.
file not found)

Exceptions in lieu of returning

Another use of an exception is a round
about way to “return” an additional
type.

Exceptions in lieu of returning

public static int search(ArrayList<String> array,
String target) {

if (array.contains(target)){
return array.indexOf(target);

else {
throw new Exception(“not found”);

}
}

Exceptions in lieu of returning
public static void caller() {

ArrayList<String> foo = new ArrayList<String>();
...
int target = -1;
try {
target = search(foo, “findme”);
}
catch (Exception e) {

System.out.println(“It must not have been”
+ “ found”);

}
}

Defining your own exception class

public class NotFoundInArrayListException extends
Exception {

public NotFoundInArrayListException() {
super();

}
}

now I can catch a

NotFoundInArrayListException

Defining your own exception class

public class NotFoundInArrayListException extends
Exception {

public NotFoundInArrayListException() {
super();

}
}
If I did not have the red part, then I would have a compiler
error when I try to create a new
NotFoundInArrayListException()

Exceptions in lieu of returning

public static int search(ArrayList<String> array,
String target) {

if (array.contains(target)){
return array.indexOf(target);

else {
throw new

NotFoundInArrayListException(“not found”);
}

}

Exceptions in lieu of returning
public static void caller() {

ArrayList<String> foo = new ArrayList<String>();
...
int target = -1;
try {
target = search(foo, “findme”);
}
catch (NotFoundInArrayListException e) {

System.out.println(“It must not have been”
+ “ found”);

}
}

Because of the Scanner constructor
throwing an exception, we must write:
try {

Scanner s = new Scanner(new
File(“C:\\documents\\foo.txt”);
}
catch (FileNotFoundException e) {

System.out.println(“The file was not
found”);

return;
}

try {
Scanner s = new Scanner(new

File(“C:\\documents\\foo.txt”);
}
catch (FileNotFoundException e) {

System.out.println(“The file was not
found”);

return;
}
int x = s.nextInt();
// Compile time error! s not defined!

Scope:

The scope of a variable refers to exactly what
part of the code it is defined in.

We have seen that variables defined inside of a
method are not “available” outside of that
method. We have seen the same for loops:

This concept can be applied more generally to
ANY time we have { }

Scanner s;
try {

s = new Scanner(new
File(“C:\\documents\\foo.txt”);
}
catch (FileNotFoundException e) {

System.out.println(“The file was not
found”);

return;
}
int x = s.nextInt();
// Compile time error! s may not be initialized

Scanner s = null;
try {

s = new Scanner(new
File(“C:\\documents\\foo.txt”);
}
catch (FileNotFoundException e) {

System.out.println(“The file was not
found”);

return;
}
int x = s.nextInt();
// Compile time error! s may not be initialized

Writing to a file: Writing to a file is similar to
writing to the screen.

We just have to tell Java where to write to
instead of writing to the screen.

System.out is of type PrintStream in Java.
PrintStream writer = new PrintStream(new
File(“foo.txt”);
writer.println(“I'm writing to a file!”);
writer.close();

http://www.artima.com/designtechniques/excepti
onsP.html

Important Java ideas:
-Control flow
-Variables
-Classes
-Recursion
-Is-A relationships (inheritance /
interfaces
-Exception handling

Important Programming
concepts:

-Using methods to avoid code
duplication and keep things
organized
-black box programming
-debugging

Final exam information: (not an exhaustive
list)
-About half will be programming (includes
recursion)
-Debugging question
-Scope question
-“is-a” relationships and “has-a”
relationships
-Some “short answer” questions where the
goal is to demonstrate you understand code
flow

General tips:
-Make sure not to spend too much time on any
one question. Pay attention to how much the
question is worth.
-SKIM over things before hand. Don't try to
understand everything in a lot of detail
necessarily until you understand what the
question is.
-If something is unclear, ask. I will be there
during at least parts of the exam.

