

COMP-202 - Introduction 103

Last Class
• Introduction/Administrative details
• How to go about taking a big problem and making it

smaller
• Kinds of things that can happen when we have an

error in our program.
• Introduction to how computers work
• HelloWorld.java ---how to set up and run a program

COMP-202 - Introduction 104

Assignment 1
• I'll be posting assignment 1 sometime in the next couple of

days. Stay tuned through either webct or the course
webpage

•

• http://www.cs.mcgill.ca/~dpomer/comp202/summer2011
•

• -Some written questions
• -Some short programming questions

COMP-202 - Introduction 105

Today
• How computers store things
• Binary numbers
• Review of HelloWorld.java
• Performing math in Java
• Storing complicated results in Java using variables.

COMP-202 - Introduction 106

Storing whether it is afternoon
or morning

• Pick one electrical switch in memory.
• Whenever it is “on” it is AM
• Whenever it is “off” it is PM
•

• A computer stores billions or trillions of these
“switches” By combining many of these, we can
control many things.

•

• Note: This is just an example. Your computer
probably stores this in an entirely different way.

COMP-202 - Introduction 107

Encoding the day of the week

• How could we encode the day of the week?
•

• If we just use 1 switch, there will not be enough
information.

•

• How many “switches” will we need?

COMP-202 - Introduction 108

Storage is Exponential

• In general, if there are n possible values to store, we
can encode it using

•

• log2(n) “switches”
•

• Of course, there is no such thing as a fraction of a
switch, so we will always have to round up.

•

• Put another way, if we have n switches, we can store
2n values

COMP-202 - Introduction 109

Bits = Switch

• 1 “bit” is the same thing as a “switch”
• It has one or two values “on” or “off”
• For simplicity of notation, we will often just refer to

these as 1 (on) and 0 (off)
•

• If you like, you could call them “true/false,” “yes/no,”
“oui/non,” or “cats/dogs”

COMP-202 - Introduction 110

Byte = 8 bits

• A byte is simply 8 bits
•

• Question: How many possible values can we store in
a byte?

COMP-202 - Introduction 111

Other Memory Units

• A kilobyte is 210 bytes (1024 bytes)
• A megabyte is 210 kilobytes (1024 bytes)
• Strangely, a gigabyte is just 1,000,000,000 bytes

(this was a marketing decision)
•

COMP-202 - Introduction 112

Storing a number in a
computer

• We are used to storing numbers in what is known as
“base 10”

•

• What this means, is that every single digit has 10
possible values

•

• 0,1,2,3,4,5,6,7,8,9

COMP-202 - Introduction 113

Storing a number in a
computer

• When we look at a base 10 number, we think of each
digit as representing different amounts

•

• 8415
•

• really is:
• 5 ones
• 1 ten
• 4 hundreds
• 8 thousands
• 0 ten-thousands
• 0 hundred-thousands
•

COMP-202 - Introduction 114

Storing a number in a
computer

• When we look at a base 10 number, we think of each
digit as representing different amounts

•

• 8415
•

• really is:
• 5 ones = 5 * 10^0
• 1 ten = 5 * 10^1
• 4 hundreds = 5 * 10^2
• 8 thousands = 5 * 10^3
• 0 ten-thousands = 5 * 10^4
• 0 hundred-thousands = 5 * 10^5
•

COMP-202 - Introduction 115

Storing a number in a
computer

• But what is special about 10?

COMP-202 - Introduction 116

Storing a number in a
computer

• But what is special about 10?
•

• A reasonable conclusion to make is that we chose to
use 10 digits since we have 10 fingers. This makes it
a more natural counting system.

COMP-202 - Introduction 117

Storing a number in a
computer

• Considering that computers think in a sequence of
on/off switches, what would be a natural way to
count in a computer?

COMP-202 - Introduction 118

Storing a number in a
computer

• Considering that computers think in a sequence of
on/off switches, what would be a natural way to
count in a computer?

•

• Base 2 (a.k.a. binary)
•

• In this case we will have 2 choices of digits :
•

• 0 and 1

COMP-202 - Introduction 119

Storing a number in a
computer

• 111001111
•

• We can now do the same thing to this number:
•

• 1 ones = 1 * 2^0
• 1 twos = 1 * 2^1
• 1 fours = 1 * 2^2
• 1 eights = 1 * 2^3
• 0 16s = 0 * 2^4
• 0 32s = 0 * 2^5
• 1 64s = 0 * 2^6
• 1 128s = 0 * 2^7
• 1 256s = 0 * 2^8

COMP-202 - Introduction 120

Storing a number in a
computer

• The following number is in base 2. What would it
represent in base 10?

•

• 10011

COMP-202 - Introduction 121

Storing a number in a
computer

• The following number is in base 2. What would it
represent in base 10?

•

• 10011
•

• = 1 * 2^0 + 1*2^1 + 1 * 2^4 = 19

COMP-202 - Introduction 122

Other counting systems
• We can do this with many other numbers, although

we don't do it as often:
•

• What is
•

• 10011 in base 3?

COMP-202 - Introduction 123

Other counting systems
• We can do this with many other numbers, although

we don't do it as often.
•

• Ex: Hexadecimal : 16 digits (0-9 plus a-f)
•

• What is
•

• 10011 in base 3?
•

• 1 * 3^0 + 1 * 3^1 + 1 * 3^4 = 85

COMP-202 - Introduction 124

Converting a number to binary
• To convert a number from base 10 to binary, you can

use a “greedy” algorithm:
•

• Basically, try to take as many from the bigger
columns as possible (this works for going to other
bases as well)

COMP-202 - Introduction 125

Example: Convert 523 to binary
• Start with big powers of 2:
•

• 2^10 = 1024 --->this doesn't fit
• 2^9 = 512 ---> this fits. So we write a 1 in the 2^9

column (i.e. the 10th column from the right).
Subtracting this, we are left with 9

• 2^8 = 256-->doesn't fit into 9
• 2^7 = 128, 2^6=64,2^5=32,2^4=16, doesn't fit
• 2^3 = 8 ---> fits into 9, write a 1 in the 2^3 column.

Left with 1
• 2^2, 2^1--> don't fit.
• 2^0 fits.

COMP-202 - Introduction 126

Example: Convert 523 to binary
• 1000001001

COMP-202 - Introduction 127

Converting from arbitrary base
to another

• What if I wanted to convert a base-n number to
base-m

•

• A good way to do this is to first convert base-n to
base-10 and then convert the base-10 number to
base-m

COMP-202 - Introduction 128

Arithmetic in other bases
• To do arithmetic in other bases, you use the same

procedures that we learned in kindergarten.
•

• The only difference is that you have to remember the
possible digits are different.

•

• This means, for example, that if you are adding
numbers in binary, and you get “2” that you actually
have to write “10” ---> But this means you will most
likely have to carry a number!

COMP-202 - Introduction 129

Congratulations
• You now can understand an incredibly nerdy

computer science joke:
•

• Why do computer scientists always confuse
Christmas and Halloween?

COMP-202 - Introduction 130

Congratulations
• You now can understand an incredibly nerdy

computer science joke:
•

• Why do computer scientists always confuse
Christmas and Halloween?

•

• Because DEC 25 = OCT 31

Part 3: Programming
Languages

COMP-202 - Introduction 132

Programming Languages (1)
•We need to expresses our ideas in a form that a
computer can understand: a program
•A programming language specifies the words and
symbols that we can use to write a program

– e.g. “red” belongs to English; “rouge” belongs to
French

•A programming language employs a set of rules that
dictate how the words and symbols can be put together
to form valid program statements
–e.g. “Banana red and” in not a valid statement in English.

COMP-202 - Introduction 133

Programming Languages (2)
•Computers are very intolerant of incorrect programming
language statements
–Humans are much more tolerant of incorrect natural language
statements

• You understand “The kiten is cute” even though kitten
is mispelled.

COMP-202 - Introduction 134

Syntax and Semantics
•The syntax rules of a language define what words and
symbols are valid in this language, and how they can be
combined to make a valid program

– “The kiten is cute” is not syntactically correct.

•The semantics of a program statement define what
those words, symbols, and statements mean (their
purposes or roles in a program)

• “Banana red and.” is not semantically correct.

COMP-202 - Introduction 135

Machine Language
•Each instruction that a CPU understands is represented
as a different series of bits

• The set of all instructions that a CPU understands
directly forms the machine language for that CPU

•Each CPU type understands a different machine
language
–In other words, for each different model of CPU, a given
series of bits could mean a different instruction

• For example, on an x86-compatible CPU (Intel,
AMD), the series of bits 10101010 could mean
ADD, while on a PowerPC CPU (old Macs,
PlayStation 3) it could mean LOAD

COMP-202 - Introduction 136

Machine Language Example
•Here are the first 20 bytes of a machine language
program that:
–asks the user to enter an integer value using the
keyboard
–reads this value from the keyboard
–adds one to this value, and
–displays the new value to the screen01111111 01000101 01001100 01000110 00000001

00000001 00000001 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000
00000000 00000010 00000000 00000011 00000000

More the 6500 bytes in total!

COMP-202 - Introduction 137

Do you think it would be fun or
easy to write a program in

COMP-202 - Introduction 138

Machine Language
Disadvantages

•Very tedious and confusing: machine language is
extremely difficult for humans to read
•Error-prone
–If you change one bit from 1 to 0 (or vice-versa), or
forget a bit, your program's behavior will likely be not
even close to what you expected
–Moreover, errors are hard to find and correct
•Programs are not portable
–Running the program on a different processor or CPU
requires a complete rewrite of the program

COMP-202 - Introduction 139

High-Level Languages (1)
•To make programming more convenient for humans,
high-level languages were developed
•No CPU understands high-level languages directly
–Programs written in these languages must all be
translated in machine language before a computer can
run them (that's what a compiler is for)
•Basic idea:
–Develop a language that looks like a mix of English and
mathematical notation to make it easier for humans to
read, understand, and write it
–For each CPU type, develop a program that translates a
program in high-level language to the corresponding
machine language instructions (a compiler)

COMP-202 - Introduction 140

Compilers

CPU 1 CPU 2

Source code
(high-level)

Compiler
(to CPU 1)

Compiler
(to CPU 2)

Binary code
(CPU 1)

Binary code
(CPU 2)

COMP-202 - Introduction 141

Interpreters (1)
•An interpreter is another kind of program. It takes
source code and translates it into a target language
–However, the target language instructions it produces are executed
immediately
–No executable file is created

COMP-202 - Introduction 142

Interpreters (2)

CPU 1 CPU 2

Source code
(high-level)

Interpreter
(for CPU 1)

Interpreter
(for CPU 2)

COMP-202 - Introduction 143

Java combines a compiler with
an interpreter

• Java compiler (javac, included in JDK 6) takes
source and translates it into bytecode

foo.java
(Java)

foo.class
(bytecode)

javac

foo.class can than be executed using an
interpreter, the Java Virtual Machine (JVM)

COMP-202 - Introduction 144

Programming Errors
•A program can have three types of errors
•Compile-time errors: the compiler finds problems with
syntax and other basic issues
•Run-time errors: a problem occurs during program
execution, and causes the program to terminate abnormally (or
crash)
–Division by 0
•Logical errors: the program runs, but produces incorrect
results

• celcius = (5.0 / 9.0) * fahrenheit - 32;
 // Incorrect equation; should be
 // (5.0 / 9.0) * (fahrenheit – 32)

COMP-202 - Introduction 145

Development Life Cycle

Run
program0 errors

Syntax
errors

Logic and
run-time
errors

Compile
program

Write
program

•

•Errors may take a long time to debug!
–Important Note: When you compile for the first time and see 150
errors, do not despair. Only the first 1 or 2 errors are relevant. Fix
those and compile again. There should be fewer errors (like 50).
Repeat until there are no more errors.

COMP-202 - Course Details 146

Exercises to practice this at
home

• A) Practice breaking the following tasks into smaller
pieces. Make sure the pieces are small enough that
you can manage them.

• 1)Choosing what channel to watch on TV
• 2)Writing a 5 paragraph essay
• 3)Studying for an exam
• 4)Arguing a speeding ticket in court
•

• B) Look at the resources on the course website and try
to compile the HelloWorld program

• Note: The file MUST be called HelloWorld.java (case-
sensitive) or else the program will not compile

• C)Take any number in base 10 and convert it to several
other bases.

COMP-202
Unit 1: Introduction to Java

CONTENTS:

Java Basics
Variables

COMP-202 - Introduction 148

Java Program: Hello World
public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

To print something to the screen, you would write a
program as above.

This should be inside a file called HelloWorld.java

You then compile it by typing javac HelloWorld.java
You can run it by typing java HelloWorld

COMP-202 - Introduction 149

Java Program: Hello World
public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

The first thing is that every program in java MUST be
inside of a class. We'll go into more detail on what this
means, but you can think of a class as grouping things
together

“public class NAMEOFFILE { “ in it.
(Note: we'll see later that this isn't always on the first line

though!)

COMP-202 - Introduction 150

Java Program: Hello World
public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

Inside a class, there are (usually) 1 or more methods. A
method is simply a group of instructions to Java that
can have both an input and an output. Conceptually, it
is like a function in math.

In this case, the method is main()

COMP-202 - Introduction 151

Java Program: Hello World
public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

Every Java program you ever write has to have a main
method.

Not every class that you ever write in Java will have a
main method.

If you don't have a main method, you can compile your
class, but you can't run it.

COMP-202 - Introduction 152

Java Program: Hello World
public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

Experiment: See what happens if you change

public static void main(String[] args) to

public static void Main(String[] args)
Try
1)javac HelloWorld.java
2)java HelloWorld

COMP-202 - Introduction 153

Java Program: Hello World
public class HelloWorld {
 public static void main(String[] args) {
 System.out.println("Hello World!");
 }
}

This method is called main because main is written
before (String[] args).

We often will call this “the main method”

COMP-202 - Introduction 154

Java Program: Hello World

The main method can consist of many statements or
instructions

public class KnockKnock {
 public static void main(String[] args) {
 System.out.println("Knock Knock!");
 System.out.println("Who's there?");
 System.out.println("Java");
 }
}

COMP-202 - Introduction 155

Java Program: Hello World
A class can consist of many methods. Here is a class with

many methods. They are called elmer, bugs, Bugs,
daffy, and yosemitesam

public class LoonieToons {
 public static void bugs() { }
 public void Bugs() { } //no link to bugs

public int elmer() { }

 private static double daffy() {
 } public void yosemitesam(int wile, double coyote){}

}

COMP-202 - Introduction 156

Java Program: Hello World
Because the class LoonieToons does not have a main

method you can not run this class

public class LoonieToons {
 public static void bugs() { }
 public void Bugs() { } //no link to bugs

public int elmer() { }

 private static double daffy() {
 } public void yosemitesam(int wile, double coyote){}

}

COMP-202 - Introduction 157

Java Program: Hello World
Any program you ever write in Java will always start the

the beginning of the main method.

Remember that the beginning of a method is always
marked by the { that immediately follows the name of
the method.

COMP-202 - Introduction 158

About that line:
public void yosemitesam(int wile, double coyote) {

There are a lot of different pieces to this.

Remember that in Java we can space things however we
want. Anywhere that 1 space is allowed, multiple
spaces can be allowed too (or new lines or tabs)

public
void

 yosemitesam(int
wile
, double coyote)
 {

COMP-202 - Introduction 159

About that line:
public void yosemitesam(int wile, double coyote) {

This line here is known as a method header. It gives you
information about the method

yosemitesam is the name of the method

COMP-202 - Introduction 160

About that line:
public void yosemitesam(int wile, double coyote) {

This line here is known as a method header. It gives you
information about the method

void is what is known as the return type of the method.
We will talk more about this next class, but effectively
this means “the thing that the method produces”

COMP-202 - Introduction 161

About that line:
public void yosemitesam(int wile, double coyote) {

This line here is known as a method header. It gives you
information about the method

public is a descriptor for the method. For the time being,
we will almost always write the 2 descriptive words
“public” and “static” before methods. But we will see in
a few weeks what it means to have other things

COMP-202 - Introduction 162

About that line:
public void yosemitesam(int wile, double coyote) {

This line here is known as a method header. It gives you
information about the method

Between the parenthesis is the input to a method. Here is
a list of things that the method will always be given
when it is run. We will see that this is actually a list of
values provided to the method.

COMP-202 - Introduction 163

About that line:
public void yosemitesam(int wile, double coyote) {

This line here is known as a method header. It gives you
information about the method

Finally we have an opening { which denotes the start of
the method. Technically the { is not considered part of
the method header.

COMP-202 - Introduction 164

Java Program: Mathematical
operations

public class DoMath {
 public static void main(String[] args) {
 System.out.println(“My Comp 202 grade”);

System.out.print(“is based on”);
System.out.println(“my” + “assignments” +

“,midterm”);
System.out.print(“and final”);
System.out.println(“If I get 60,70,80 on each”);
System.out.println(“I'll get a “);
System.out.println(60 * .3 + 70*.0 + 80*.7);

 }
}

COMP-202 - Introduction 165

Java Program: Mathematical
operations

Java will evaluate all of the above expressions.

Essentially, Java will always print whatever is between the
() after println (or print)

Sometimes, the stuff between the () will be simple like
“HelloWorld”

Java will always evaluate the expression between the ()
before printing it.

COMP-202 - Introduction 166

Java Program: Mathematical
operations

There are rules for determining how it will evaluate the
expression. For example, if the value between the ()

consists of two things between “ “ that are separated by
a +, then Java will just combine the 2 things.

System.out.println(“hello” + “world”);
is the same as
System.out.println(“helloworld”);

COMP-202 - Introduction 167

Java Program: Mathematical
operations

If there are 2 numbers separated by a mathematical
symbol, then Java will evaluate them according to the
math rules.

If it sees something complicated such as

System.out.println(1 + (2+3))

then it will have to do the parenthesis part first.

COMP-202 - Introduction 168

What if I have a very
complicated expression?

What if I have a very complicated expression to evaluate
and I want to break it up into multiple steps.

Or what if I want to use some value many times
throughout my program. For example, maybe I have 5
numbers and I want to print the difference of each
number from the average. For example:

1,2,3,4,5 has average 3

1 is -2 from the average, 2 is -1 from average, 3 is 0 from
average, etc.

COMP-202 - Introduction 169

What if I have a very
complicated expression?

public class RepeatConfusing {
public static void main(String[] args) {

System.out.println(1 - (1+2+3+4+5)/5);
System.out.println(2 - (1+2+3+4+5)/5);
System.out.println(3 - (1+2+3+4+5)/5);
System.out.println(4 - (1+2+3+4+5)/5);
System.out.println(5 - (1+2+3+4+5)/5);

}
}

COMP-202 - Introduction 170

What if I have a very
complicated expression?

This is a little silly though because you'll notice we do the
same operation many times.

Any time you can reduce the number of calculations the
computer has to do, your program will run a bit more
efficiently and things will be easier to read. (In this
case the difference is so small you won't notice the
difference.)

COMP-202 - Introduction 171

Solution: Store the results into
 a variable

If we have a case like this, we can use a variable to store
the results of a computation.

To make a variable, you have to do 2 things:

1)Decide what kind of thing or type you want to store.
-If you want to store an integer, this is called int in

Java
-If you want to store a number with a fractional part,

this is normally called double in Java (also could be
float)

-If you want to store letters, this is usually done with
something called a String in Java.

COMP-202 - Introduction 172

Solution: Store the results into
 a variable

2)Decide on a name for your variable.

Your variable can be named anything you like with a few
exceptions:

1)It can only contain letters, numbers, and _ (no ; for
example)

2)It must start with a letter
3)There must not be another variable with the same

name in scope
4)Variable names are case sensitive so Foo is different

than foo
5)There are a few words in Java that are reserved. You

can't call your variables these (for example “public”)

COMP-202 - Introduction 173

Solution: Store the results into
 a variable

Once you decide on a name and type, you can do what is
known as declaring a variable by writing first the type
and then the name and then a ;

For example:

int mean;

would declare a variable which will store an integer. It will
be called mean in further computations.

At the beginning the variable mean has no value and is
called uninitialized

COMP-202 - Introduction 174

Solution: Store the results into
 a variable

To store a value into a variable, you write:

variablename = expression

What this means is “assign the value of the variable
called variablename to be the value of expression”

The equals in Java is very different from the = in math.
1)It is not symmetric. a = b is not the same as b = a
2)It is a one time assignment. All that Java does is

evaluate the expression and assign its value.
3)The types on the left and right side of the equal have

to be the same. For example, you can't store letters
into a number.

COMP-202 - Introduction 175

Solution: Store the results into
 a variable

Once you have a variable initialized, you can use it in any
other computation:

int mean;

mean = (1 + 2 + 3 + 4 + 5) / 5;

System.out.println(1 – mean);
System.out.println(2- mean);
......

COMP-202 - Introduction 176

Solution: Store the results into
 a variable

You can also initialize the variable mean at the same time
as you declare it:

int mean = (1 + 2 + 3 + 4 + 5) / 5;

System.out.println(1 – mean);
System.out.println(2- mean);
......

COMP-202 - Introduction 177

Question:
Suppose I make 2 variables:

int x = 0;
int y;
y = 1;

x = y + 1;
y = x + 1;

What would be the value of x and y at the end?

COMP-202 - Introduction 178

Question:
Suppose I make 2 variables:

int x =0;
int y;

x = y + 1;
y = x + 1;

What would be the value of x and y at the end?

COMP-202 - Introduction 179

Question:
Suppose I make 2 variables:

int x =0;
int y;

x = x + 1;
y = x + 1;

What would be the value of x and y at the end?

COMP-202 - Introduction 180

Question:
What if I have 2 variables x and y and I want to swap the

contents of them? In other words, I want to write
something so that afterwards x has the old value of y
and y has the old value of x.

COMP-202 - Introduction 181

What if you don't declare x
If you write

x = 5;

without declaring x, you will get a compiler
error.

The error will complain that it does not
recognize x.

COMP-202 - Introduction 182

Some basic types

int : stores an integer number
String : stores letters. For example “Hello

World”
double : stores real numbers (fractions)
long : stores a long integer (up to 9

quintillion!)
float : like double, can store numbers
boolean : stores either true or false
char : stores one character

COMP-202 - Introduction 183

Mismatching types

If you try to store something of type X in
something of type Y, the Java compiler
will complain.

For example,

int x;
x = “Hello”
What are the types of “Hello” and x

COMP-202 - Introduction 184

Why does Java care anyway?

If the computer is as stupid as you say it
is, why does the Java compiler care that
you are trying to store a string in an int?

COMP-202 - Introduction 185

Why does Java care anyway?

Answer: The problem is when you write

int x;

Java is setting aside enough memory to
store 1 integer value.

If you try to store a String in it, it doesn't
know whether it will fit or not!

COMP-202 - Course Details 186

Next Class
• How to perform more complex

operations
•

• Differences between different types
•

• How to group complex operations
together using methods

