
COMP-202
Unit 0: Course Details

CONTENTS:
Focus of the Course and Prerequisites
Outline and Textbook
Course Structure and Grading Scheme
Computer Lab Info and Required Software
Getting started “thinking like a computer scientist”
A

COMP-202
Intro to Computing I

COMP-202 - Course Details 3

Reasons for being here?
•Reason #1:

– My faculty made me
•Reason #2:

– Learning to understand better
computers is exciting!

•Reason #3:
– I want to conquer the world using

robots!

COMP-202 - Course Details 4

•

COMP-202 - Course Details 5

Goals of this course
(What you will be able to do in a few months)

•Understanding how computers think
•Being able to describe a task in a way a computer can
understand
•Breaking complex tasks into smaller, simpler tasks
•Translating these instructions into the programming
language Java
•Pass a required course
•Have fun (?)
•
•Aimed at students with little or no background in
programming and/or knowledge of computer science

COMP-202 - Course Details 6

I heard from one of my friends that this course
is really hard and time consuming!

•Unfortunately, programming computers is a pretty time
consuming process. The main challenge is not always
writing the code, but debugging the code when
things don't work as they should.
•
•I will do everything I can to make the course load
reasonable, but sometimes it is very difficult to figure
out how long something will take ahead of time.

COMP-202 - Course Details 7

I hate computers and am only here because my
stupid faculty made me take this @#$# course!

•Even if you never write another program, this course
will help you to:
•
•Understand what types of problems computers can and
can't solve in practice. (Applications?)
•Improve your logical thinking and problem solving skills
•A new tool to help you with your other courses.

COMP-202 - Course Details 8

Course Plan
•We will spend about half the course learning the
“basics” of programming. This will involve mostly
learning about the FLOW of a program
•
•We will then spend the remainder of the course
focusing on Object-Oriented Programming.

COMP-202 - Course Details 9

Non-Goals of this course
(What you will not be able to do at the end. Sorry)

COMP-202 - Course Details 10

How do I Ace this course?
•Practice! When you see an example in class, try it at
home.
•Do your assignments!!!!!!!
•Do your assignments!!!!!!!
•Prepare for the lectures ahead of time. Make sure you
understand the previous lecture and come prepared to
class with questions.
•Ask a question whenever you don't understand
something.

– It is the only way that Dan can figure out what he
isn't explaining well.

A bit about your instructor
(the one minute summary!)
• Dan Pomerantz (course lecturer)
•

Recommender Systems
• Msc. from McGill.
• Worked on movie recommendation systems

in MRL lab
• http://www.cim.mcgill.ca/~junaed/video/roll

over_follow.mpg
• http://www.recommendz.com

Bing
• Have been doing work on Bing search

engine
•

• However, I still use google

My favourite thing about Bing
•

•

Still annoyed......
•

•

COMP-202 - Course Details 17

Prerequisites
•Prerequisite: A CEGEP-level math course or equivalent
•For those who graduated from high school outside
Quebec and thus never attended CEGEP: any upper-level
math course
•In any case, the ability to think logically and
rigorously is more important than calculus, algebra or
trigonometry

COMP-202 - Course Details 18

Course Communication
•Course home page:

• http://www.cs.mcgill.ca/~cs202

–Instructor contact information, course outline, lecture
notes, assignment specifications, and other course
material
•myCourses (WebCT Vista):

• http://www.mcgill.ca/mycourses

http://www.mcgill.ca/mycourses

COMP-202 - Course Details 19

Course Structure: Lectures
•Lectures (4.5 hours/week, compulsory)
–Highlight key concepts; opportunity to practice and ask
questions, receive and give feedback, MAKE MISTAKES.
–You will get more out of the class if you do the readings
before hand and participate.
–All material taught in lectures is examinable unless otherwise
stated
–
–Ask Questions if you don't understand something.
–
–It is the only way I'll know whether I'm explaining something
clearly or not.

COMP-202 - Course Details 20

Assignments
• Assignments are designed to let you practice the things

you learn in class.
• It is VERY important that you do the assignments, as

they offer you a chance to get feedback on your
progress.

COMP-202 - Course Details 21

Outside of class
•Tutorials (optional but very useful)

• There will be several tutorials throughout the
term. These will be designed to teach material
not covered in lectures (e.g. setting up your
account with SOCS) and also to give you more
practice on it

• Will be led by a teaching assistant
• Smaller groups typically

•Office hours (1 instructor, 3 teaching assistants)
• Approximately 8 office hours per week

COMP-202 - Course Details 22

Grading Scheme (1)
•4 assignments: 30%
•Assignment 1: 5%
•Assignment 2: 5%
•Assignment 3: 10%
•Assignment 4: 10%
•
There is also the possibility that some of these assignments will be
“split” into 2 parts, depending on timing. In this case, we'd have
more assignments but each would be worth less.
•
•All assignments count toward your final grade
–One of the best ways to learn the material
–MUST be done INDIVIDUALLY

COMP-202 - Course Details 23

Grading Scheme (2)
•4 assignments: 30%
•1 midterm examination: 20% (end of May or early June)
–In class
–E-mail your instructor as soon as possible if you
have a conflict/preference of date!

• 1 final examination: 50%
–July 7th

–
–Students who do poorly on the midterm can
transfer the weight to the final exam.

COMP-202 - Course Details 24

Plagiarism :(1

•

•

•

•

•

•

•

• 1Maja Frydrychowicz. Lecture. Date: January
4th, 2011. Slide number 23

COMP-202 - Course Details 25

Recommended Textbook
(not required)

• How to Think Like a
Computer Scientist
(Java Edition)

•

• http://openbookproj
ect.net/thinkcs/java/
english/dist_v4.0/thi
nkapjava.pdf

COMP-202 - Course Details 26

SOCS Computer Labs
•If you are officially registered in the course, you can create an
account to use the computers on the 3rd floor of Trottier
building
•Computer availability:
–Computers in open areas: physically accessible 24 hours a
day, 7 days a week
–Computers in side rooms: physically accessible on weekdays
10:00 - 20:00, weekends 12:00 - 20:00
•Consultant on duty: weekdays 10:00 - 20:00, weekends 12:00
- 20:00
•Computers run GNU/Linux (Unix-like OS), not MS Windows
–Unix seminars are offered by SOCS Systems staff

COMP-202 - Course Details 27

Required Software
•You are encouraged to use your personal computer or
laptop to complete course work
•Software used in this course
–Required: Java Development Kit (JDK)
–Optional: RText, Eclipse (later in the course)
•See course outline for details on how to obtain the
above software packages
•All programs you submit for assignments must compile
and run using JDK 6 or later
–JDK is backward compatible; programs that compile and
run under previous versions also compile and run under
JDK 6

COMP-202 - Course Details 28

Useful Tips
•Do read everything carefully: slides, notes, textbooks,
instructions, assignment specifications, documentation,
announcements on myCourses, ...
•Do not wait until the last minute to do your assignments
•Do not fall behind; each new concept builds on previous
ones
•Contact instructors / TAs if you have difficulties
•Do not expect to be given every single detail; you will
have to look things up in the provided material and
deduce some things on your own
•Experiment
•Practice makes perfect!

COMP-202 - Course Details 29

With that in mind...
• With that in mind, let's get started

(sorry!).

COMP-202 - Course Details 30

How to Think Like a Computer
Scientist

• Most important thing is to modularize
• That is: take a big problem and break it down into

smaller problems

COMP-202 - Course Details 31

How to Think Like a Computer
Scientist

• We are not going to be able to tell the computer in one
line

•

• “Hey Computer! Make Star Craft for me!”
•

• Or explain to a robot:
•

• “Hey Robot, go save the galaxy like R2D2 and C3PO!”
•

• We are going to have to “explain” to it, piece by piece
how to do this.

COMP-202 - Course Details 32

Scenario: Managing a Day's
Tasks

• Hypothetically, suppose I am not able to attend lecture or do
any of my tasks on Thursday because of a conflict.

•

• I have 2 options:
•

• 1)Find my long lost twin brother that I didn't know I had
• 2)Program a robot to act like me in my place.
•

• Problem: Teaching a robot how to act like me for an entire
day is complicated!

•

• The first thing I need to do is break the problem down into
smaller problems

COMP-202 - Course Details 33

Example: Teaching a robot to
replace Dan for a day

• The first thing I will want to do is break my day down
into smaller, more manageable tasks. For example,

•

• 1)Get ready for work
• 2)Get to school
• 3)Lecture comp 202
• 4)Make dinner
• 5)Do laundry
• 6)Watch the Rangers lose again (oops)
• 7)Go to sleep
• Note: Your list of tasks may be different.

COMP-202 - Course Details 34

Example: Teaching a robot to
replace Dan for a day

• Things look a bit more manageable now, but some of
the tasks are still a bit complicated.

•

• Ex: Make Dinner

COMP-202 - Course Details 35

Example: Teaching a robot to
replace Dan for a day

•

•

COMP-202 - Course Details 36

Example: Teaching a robot to
replace Dan for a day

• Perhaps to avoid this, we should break the task “make
dinner” down further.

•

• How?

COMP-202 - Course Details 37

Example: Teaching a robot to
replace Dan for a day

• Perhaps to avoid this, we should break the task “make
dinner” down further.

•

• Examples:
•

• 1)Find a recipe
• 2)Buy food
• 3)Gather ingredients
• 4)Check if anything is flammable (if so, make sure I

have a fire extinguisher!)
• 4)Assemble ingredients
• 5)Taste and verify that it tastes good

COMP-202 - Course Details 38

Example: Teaching a robot to
replace Dan for a day

• Even these tasks can be broken down further:
•

• We could break “buy food” down into
•

• 1)Choose the best grocery store
• 2)Go to grocery store
• 3)Find each item
• 4)Pay cashier
• 5)Go home

COMP-202 - Course Details 39

Example: Teaching a robot to
replace Dan for a day

• Continuing this, we could break “pay cashier” into:
•

• 1)Wait in line
• 2)Wait for cashier to give you the sum
• 3)Look for money
• 4)Realize you don't have any
• 5)Plead with the cashier to let you take the items

anyway
• 6)Get thrown out of the store for not paying
•

COMP-202 - Course Details 40

Example: Teaching a robot to
replace Dan for a day

• Eventually, you will get down to simple enough tasks
that you understand the steps necessary.

•

• Wait in line
•

• could be broken down into
•

• 1)Stand up
• 2)Don't fall
• 3)Check if the cashier is done with the current

customer.
• 4)If so, walk forward 2 feet. If not, go back to step 1
•

COMP-202 - Course Details 41

Programming a Computer
• Now that you convinced me how hard programming

computers is, why should I bother? It seems so much
easier to explain things to a human being!

COMP-202 - Course Details 42

Programming a Computer
• Computers are stupid!
•

• We have to explain all our instructions in very simple,
unambiguous ways.

•

• In exchange, computers are very fast!
• (you try multiplying a 45 digit number!)
•

• They are also very good at following instructions IF
YOU GIVE THEM THE RIGHT INSTRUCTION TO
FOLLOW!

COMP-202 - Course Details 43

Programming a Computer

Kasparov vs DeepBlue

COMP-202 - Course Details 44

Programming a Computer
Humans are good at some things, but in certain cases,
computers are more reliable.

Many things, such as stress, can cause us to perform worse
when it matters the most.

COMP-202 - Course Details 45

Programming a Computer
Humans are good at some things, but in certain cases,
computers are more reliable.

Many things, such as stress, can cause us to perform worse
when it matters the most.

awww---->

(actually these guys just
stink in general)

COMP-202 - Course Details 46

Java vs. Other programming
languages

• We are going to study Java. However, most other
languages, (e.g. C, C++, C#, Python, Perl, Matlab,
etc.) will work the same way

•

• The differences will be:
•

• 1)How simple the steps have to be broken down for
the computer

• 2)The syntax for translating these simple steps from
human language to computers

• 3)The exact procedure for combining these “atomic”
steps.

•

COMP-202 - Course Details 47

Java vs. Other programming
languages

• For some people “making dinner” is such a natural step
that we don't need to break it down any further than
that. For others, you may need to spell it out more
clearly.

•

• Programming languages are similar. Some languages
require spelling things out more than others.

•

COMP-202 - Course Details 48

Java vs. Other programming
languages

• What is the advantage or disadvantage of either
approach?

•

• Would you rather have a chef who required lots of
detail or not?

•

COMP-202 - Course Details 49

Getting started with Java:
• http://www.cs.mcgill.ca/~dpomer/comp202/summer20

11/resources.html

-First install JavaSdk at the link above.

This is often already installed on MacOsX by default

COMP-202 - Course Details 50

Java vs. Other programming
languages

• (optional) Then you can install Rtext or Ecclipse or
another IDE (integrated development environment)

•

• Personally, I prefer to use Notepad or TexEdit or Emacs
as they are simpler to set up.

•

• The IDE matters more when you are using a huge
project. For example with hundreds of files in it. Then
having 100 windows of Notepad open at once is tough

•

COMP-202 - Course Details 51

Java vs. Other programming
languages

• Next step: Open a command terminal window:
•

• On MacOsX click
• Applications-->Utilities-->Terminal
• On Windows click start--->run . Then type “cmd”

COMP-202 - Course Details 52

Java vs. Other programming
languages

• Now, write your program either in Notepad or one of
the ides (or any other text editor). Be careful if you use
microsoft word though.

•

• In this case, just download the file HelloWorld.java
from the course webpage

COMP-202 - Course Details 53

Java vs. Other programming
languages

• From the command prompt, first navigate to the
directory of your file HelloWorld.java

•

• You do this by typing
•

• cd nameofdirectory
•

• For example
•

• cd C:\Documents\comp202\javafiles
• or
• cd /Documents/comp202

COMP-202 - Course Details 54

Java vs. Other programming
languages

• Then type
•

• javac HelloWorld.java
•

• If nothing shows up, great!
•

• Common problems:
•

• 1)HelloWorld.java not found (make sure you did cd to
the directory HelloWorld.java is saved in)

• 2)(windows only) javac : command not found . In this
case you have to tell your computer WHERE to look.

COMP-202 - Course Details 55

Java vs. Other programming
languages

• To deal with number 2, there are 2 options:
•

• 1)First fast way to do it is to type the entire path to
javac

•

• For example,
•

• C:\Windows\ProgramFiles\java\jdk1.6.0\bin\javac
HelloWorld.java

•

•

COMP-202 - Course Details 56

Java vs. Other programming
languages

• Better is to edit the class path variable.
•

• To do this in vista or windows 7, search for something
like “edit system/environment variables”

•

• Then click edit path and add
C:\Windows\ProgramFiles\..... to it

•

•

COMP-202 - Course Details 57

Java vs. Other programming
languages

• After you do this, you should see a file HelloWorld.class
in the same folder as HelloWorld.java

•

• Now you can run your program by typing
•

• java HelloWorld
•

• (Note: If you typed the full path to use javac, you will
have to do the same thing here)

•

•

COMP-202 - Course Details 58

Analyzing what we just wrote:
• public class HelloWorld {
• public static void main(String[] args) {
• System.out.println("Hello World!");
• }
• }
•

•

• Here we see the simplest Java program that does
anything.

COMP-202 - Course Details 59

What do we notice?
• The entire block is surrounded by a set of { } and

inside a “class”
• There is another block between { } called a method. In

this case it is the “main” method
• System.out.println will print some text to the screen
• Some statements should end in ;

COMP-202 - Course Details 60

What do we notice?
• Almost every single file you ever write in Java must

contain exactly 1 class (minor exception is something
called enum which we'll mention later)

•

• A class always looks like:
•

• [description] class NameOfClass {
•

• the definition of the class goes in here!
•

• }

COMP-202 - Course Details 61

What do we notice?
• A class contains 2 things:
•

• 1) methods
• 2) variables that are not part of any method
•

•

• Note that methods can also contain variables. For the
beginning of the course we will only talk about the
variables that are inside methods.

COMP-202 - Course Details 62

What do we notice?
A method looks like

[description] [return type] nameOfMethod(arguments) {

 method body goes here

}

and is essentially a set of instructions grouped together
according to some logical meaning.

COMP-202 - Course Details 63

What do we notice?
An instruction in Java always ends in a ;

There are some lines of code in Java that are not
instructions. For example, the line

public static void main(String[] args)

is NOT an instruction.

System.out.println(“HelloWorld!”);

IS an instruction

COMP-202 - Course Details 64

What do we notice?
Every time you write

System.out.println

it will print whatever is between the “” to the screen and
then a new line.

What is the point of the quotation?

This denotes something in Java called a String .
Essentially, this tells Java to treat everything between
the “ “ as letters as opposed to part of a different
computation

COMP-202 - Course Details 65

A bit more complex program
• public class CallBelow {
• public static void main(String[] args) {

• System.out.println(“Hello”);
• System.out.println(“”);
• System.out.println(“”);
• System.out.println(“”);
• System.out.println(“”);
• System.out.println(“”);
• System.out.println(“”);
• System.out.println(“Down there!”);

• }
• }
• What do you think this does?

COMP-202 - Course Details 66

A bit more complex program
public class StringAndIntegers {
 public static void main(String[] args) {

System.out.println(“4+6”);
System.out.println(4+6);
//the next one is tricky!
System.out.println(3+5*2);

}
}

COMP-202 - Introduction 67

Programming and Computers
•In order to understand what programming is, we need
to know what a computer is
•A computer is a machine that executes lists of
instructions
–We feed a list of instructions to the computer and the computer
executes them
–The computer may apply the instructions on additional information
fed to the computer (the input)
–The computer may produce information as a result of executing this
list of instructions (the output)

COMP-202 - Introduction 68

Programming and Computers
• Programming a computer involves two things:
•
•
• 1) Designing lists of instructions that will make the

computer solve specific problems
• 2) Having the computer execute the instructions
•
•
•The purpose is to have the computer solve the problem
for you instead of you solving the problem by hand

COMP-202 - Introduction 69

Designing instruction list
• Designing an instruction list is largely about breaking

problems down into smaller tasks.
•
• It is also about considering the “input and output” of a

program

COMP-202 - Introduction 70

Input vs Output : Input
• The input to a program is what goes into it. It is

whatever is given to the program or problem.
•
• This is anything that is necessary to solve it.

COMP-202 - Introduction 71

Input vs Output : Output
• The output from a program is what comes from it.
•
• This is anything that is produced as a result of the

program running

COMP-202 - Introduction 72

Example: f(x) = 2x
• The input to this mathematical function is “a number”
•
• The output to this function is “a number”
•
• Note: Input is similar to “domain” in math. Output is

similar to “range”

COMP-202 - Introduction 73

Example: f(x) = 0
• What is the input and output?

COMP-202 - Introduction 74

Example: f(x,y) = 2x + 3y
• The input to this mathematical function is “two

numbers” -- x and y
•
• The output is 1 number. The sum of 2x and 3y

COMP-202 - Introduction 75

Input/Output
• Input/Output is not necessarily restricted to math

problems.
•
• For example, what is the input and output of the

problem “cooking scrambled eggs”
•
•
• What is the input and output of the problem of

counting how many cards you have of a given suit in a
deck of cards?

COMP-202 - Introduction 76

Amelia Bedilia

COMP-202 - Introduction 77

Breaking the problem down
•How can we write this suit-counting problem down in
simple to understand instructions?

COMP-202 - Introduction 78

Counting Cards of a Given Suit
•1)Take a blank piece of paper and the deck
•2)If there are cards left, take the top card in the deck
•If there are not cards left, skip to step 2
•3)Check if the card belongs to the suit you are looking
for. If so, make a mark on the piece of paper.
•4)Go back to step 2
•5)Count the number of marks on your paper. That
number is the answer we want.

COMP-202 - Introduction 79

Counting Cards of a Given Suit
•1)Take a blank piece of paper and the deck
•2)If there are cards left, take the top card in the deck
•If there are not cards left, skip to step 2
•3)Check if the card belongs to the suit you are looking
for. If so, make a mark on the piece of paper.
•4)Go back to step 2
•5)Count the number of marks on your paper. That
number is the answer we want.

an “if statement”

COMP-202 - Introduction 80

Counting Cards of a Given Suit
•1)Take a blank piece of paper and the deck
•2)If there are cards left, take the top card in the deck
•If there are not cards left, skip to step 2
•3)Check if the card belongs to the suit you are looking
for. If so, make a mark on the piece of paper.
•4)Go back to step 2
•5)Count the number of marks on your paper. That
number is the answer we want.

a “loop”an “if statement”

COMP-202 - Introduction 81

Counting Cards of a Given Suit
•1)Take a blank piece of paper and the deck
•2)If there are cards left, take the top card in the deck
•If there are not cards left, skip to step 2
•3)Check if the card belongs to the suit you are looking
for. If so, make a mark on the piece of paper.
•4)Go back to step 2
•5)Count the number of marks on your paper. That
number is the answer we want.

a “loop”an “if statement”

a “variable”

COMP-202 - Introduction 82

Instructions and Precision
•The instructions for finding a card in a deck or counting
the number of cards of a given suit in a deck are very
precise and unambiguous
•
•Amelia would have no room for misunderstanding
•
•Writing lists of instructions like these is the very essence
of programming a computer

COMP-202 - Introduction 83

Programs (1)
•

• A computer program is essentially a list of instructions
telling a computer what to do

•

• The computer is “stupid” in that it is just following the
instructions without knowing what it is doing.

•

• Thus you must be very precise and omit no details.

COMP-202 - Introduction 84

Programs (1)
•

• Programs have an “input” and an “output” as well.
•

• If you omit the proper instructions or include the
wrong instructions, generally 4 things can happen:

•

• 1)You get incredibly lucky and on that particular input
it works anyway

• 2)The program gives the incorrect output
• 3)The program crashes
• 4)The program goes on forever and ever
•

•

COMP-202 - Introduction 85

Case 1
•

• Sometimes you will give the computer the wrong
instructions, but it will work anyway on a particular
input.

•

• For example, in the card program, suppose we
ommitted the instruction “make a mark on the piece of
paper”

•

• This means the count will always be 0, no matter what
the input.

• When would this still lead to the “right” answer?

COMP-202 - Introduction 86

Case 2
•

• The program gives the wrong output
•

• This would happen in the previous example on any
input where the pack of cards had at least one card of
the suit in question.

COMP-202 - Introduction 87

Case 3
• Sometimes the program will crash.
•

• In the card example, this happens if the computer is unable to
do a certain step.

•

• For example, at step 1 we have: “Take a blank piece of paper
and the deck”

•

• Suppose you don't have any paper. Then this step is
impossible.

• In a computer program, when something like this happens,
the program will crash, exiting without output

COMP-202 - Introduction 88

Case 4
• The program goes on forever and ever
•

• What if after step 3, we inserted “Put the card in your hand
back on top of the deck”

•

• Then the program would go on forever. We would continually
pick up the top card, check if it is the suit we are interested
in, possibly mark it down on paper, then put it back on top.
Then we would pick up the top card (the same card!), check
if it is the suit we are interested in, possibly mark it down on
paper, then put it back on top. Then we would pick up the top
card

COMP-202 - Introduction 89

Case 4
• check if it is the suit we are interested in, possibly mark it

down on paper, then put it back on top. Then we would pick
up the top card, check if it is the suit we are interested in,
possibly mark it down on paper, then put it back on top. Then
we would pick up the top card, check if it is the suit we are
interested in, possibly mark it down on paper, then put it back
on top. Then we would pick up the top card, check if it is the
suit we are interested in, possibly mark it down on paper, then
put it back on top. Then we would pick up the top card, check
if it is the suit we are interested in, possibly mark it down on
paper, then put it back on top. Then we would pick up the top
card, check if it is the suit we are interested in, possibly mark
it down on paper, then put it back on top.

COMP-202 - Introduction 90

Human and Computer
Languages

•Compare to the following English sentence:
•"The lady hit the man with a baby"
•
•Does this mean
•1)A lady hit a man who had a baby? (what a jerk!)
•2)A lady used a baby to hit a man? (good lord!)
•3)A lady and a baby ganged up on a man and hit him.
(kids today!)
•
•Good programming languages (such as Java), on the
other hand, always has only one possible interpretation.

COMP-202 - Introduction 91

Human and Computer
Languages

•One of the challenges is to learn the different
interpretations the computer will give to commands.
•
•The computer will not normally tell you how it is
interpreting things. It is up to you to figure it out, both by
looking at your code and observing the output.

COMP-202 - Introduction 92

How a Computer is Organized
•Before going into more details on Java, we need to
understand a bit about how a computer is organized.
•
•How does a computer perform computations?

COMP-202 - Introduction 93

Hardware and Software (1)
•A computer system consists of both hardware
components and software
•Hardware consists of the physical, tangible parts of a
computer
–Cases, monitors, keyboard, mouse, chips
–Rule of thumb: If you can take it in your hands and it is
part of a computer system, then it is hardware
–It is the hardware which executes the instructions
•Software: Programs and data that they use
•A computer requires both hardware and software
–Software cannot run without hardware; instructions are
useless unless they are performed by someone /
something

COMP-202 - Introduction 94

Hardware and Software (2)
–Hardware will not do anything without software telling it
what to do
–Therefore, each is essentially useless without the other

COMP-202 - Introduction 95

An (old) Personal Computer
Monitor /
screen
(output)

Speakers
(output)

Keyboard (input)
Mouse
(input)

•Case;
•contains:
•CPU
•Memory
•Disk drives
•...

COMP-202 - Introduction 96

Central Processing Unit (CPU)
•The "operation/action" part of the
computer's brain
–Basically controls the information /
data in a computer
•Perform instructions
–Arithmetic operations
–Logic operations
–Decisions
•The instructions it understands are
much simpler and fine-grained than
those we have seen in previous
examples

COMP-202 - Introduction 97

Memory
•Memory holds the data
–Think of a filing cabinet
•Main memory: Most of it is called RAM, which stands for
Random-Access Memory
–Data has to be in main memory so that the CPU can
access it
–Volatile: its contents are lost when the program
terminates or when the computer shuts down
•Secondary storage: Hard drive / CD / DVD / Blu-Ray disc
/ USB memory stick
–Persistent: its contents will not be lost when the
computer shuts down
–This is where you keep the data for long-term storage
–Secondary storage has much slower access times than
main memory

COMP-202 - Introduction 98

taking notes;
packing a box

remembering what
Dan said 2 minutes
ago

remembering your
name

COMP-202 - Introduction 99

taking notes;
packing a box
(CPU)

remembering what
Dan said 2 minutes
ago (RAM)

remembering your
name (secondary
storage)

COMP-202 - Introduction 100

remembering what
Dan said 2 minutes
ago

daydreaming

COMP-202 - Introduction 101

How does a computer store
things?

• Computer memory is electronic. It's just a bunch of
wires!

•

• All it can recognize is “on” (current goes through) and
“off” (no current goes through)

• Using many of these on/off “switches” together, we
can encode many things.

•

• For example, we can store whether it is morning or
afternoon using the following encoding:

• “if the 1st switch is on, then it must be PM. If the 1st
switch is off, then it must be AM”

COMP-202 - Introduction 102

Storing whether it is afternoon
or morning

• Pick one electrical switch in memory.
• Whenever it is “on” it is AM
• Whenever it is “off” it is PM
•

• A computer stores billions or trillions of these
“switches” By combining many of these, we can
control many things.

•

• Note: This is just an example. Your computer
probably stores this in an entirely different way.

COMP-202 - Introduction 103

Encoding the day of the week

• How could we encode the day of the week?
•

• If we just use 1 switch, there will not be enough
information.

•

• How many “switches” will we need?

COMP-202 - Introduction 104

Storage is Exponential

• In general, if there are n possible values to store, we
can encode it using

•

• log2(n) “switches”
•

• Of course, there is no such thing as a fraction of a
switch, so we will always have to round up.

•

• Put another way, if we have n switches, we can store
2n values

COMP-202 - Introduction 105

Bits = Switch

• 1 “bit” is the same thing as a “switch”
• It has one or two values “on” or “off”
• For simplicity of notation, we will often just refer to

these as 1 (on) and 0 (off)
•

• If you like, you could call them “true/false,” “yes/no,”
“oui/non,” or “cats/dogs”

COMP-202 - Introduction 106

Byte = 8 bits

• A byte is simply 8 bits
•

• Question: How many possible values can we store in
a byte?

COMP-202 - Introduction 107

Other Memory Units

• A kilobyte is 210 bytes (1024 bytes)
• A megabyte is 210 kilobytes (1024 bytes)
• Strangely, a gigabyte is just 1,000,000,000 bytes
•

COMP-202 - Introduction 108

Storing a number in a
computer

• We are used to storing numbers in what is known as
“base 10”

•

• What this means, is that every single digit has 10
possible values

•

• 0,1,2,3,4,5,6,7,8,9

COMP-202 - Introduction 109

Storing a number in a
computer

• When we look at a base 10 number, we think of each
digit as representing different amounts

•

• 8415
•

• really is:
• 5 ones
• 1 ten
• 4 hundreds
• 8 thousands
• 0 ten-thousands
• 0 hundred-thousands
•

COMP-202 - Introduction 110

Storing a number in a
computer

• When we look at a base 10 number, we think of each
digit as representing different amounts

•

• 8415
•

• really is:
• 5 ones = 5 * 10^0
• 1 ten = 5 * 10^1
• 4 hundreds = 5 * 10^2
• 8 thousands = 5 * 10^3
• 0 ten-thousands = 5 * 10^4
• 0 hundred-thousands = 5 * 10^5
•

COMP-202 - Introduction 111

Storing a number in a
computer

• But what is special about 10?

COMP-202 - Introduction 112

Storing a number in a
computer

• But what is special about 10?
•

• A reasonable conclusion to make is that we chose to
use 10 digits since we have 10 fingers. This makes it
a more natural counting system.

COMP-202 - Introduction 113

Storing a number in a
computer

• Considering that computers think in a sequence of
on/off switches, what would be a natural way to
count in a computer?

COMP-202 - Introduction 114

Storing a number in a
computer

• Considering that computers think in a sequence of
on/off switches, what would be a natural way to
count in a computer?

•

• Base 2 (a.k.a. binary)
•

• In this case we will have 2 choices of digits :
•

• 0 and 1

COMP-202 - Introduction 115

Storing a number in a
computer

• 111001111
•

• We can now do the same thing to this number:
•

• 1 ones = 1 * 2^0
• 1 twos = 1 * 2^1
• 1 fours = 1 * 2^2
• 1 eights = 1 * 2^3
• 0 16s = 0 * 2^4
• 0 32s = 0 * 2^5
• 1 64s = 0 * 2^6
• 1 128s = 0 * 2^7
• 1 256s = 0 * 2^8

COMP-202 - Introduction 116

Storing a number in a
computer

• The following number is in base 2. What would it
represent in base 10?

•

• 10011

COMP-202 - Introduction 117

Storing a number in a
computer

• The following number is in base 2. What would it
represent in base 10?

•

• 10011
•

• = 1 * 2^0 + 1*2^1 + 1 * 2^4 = 19

COMP-202 - Introduction 118

Other counting systems
• We can do this with many other numbers, although

we don't do it as often:
•

• What is
•

• 10011 in base 3?

COMP-202 - Introduction 119

Other counting systems
• We can do this with many other numbers, although

we don't do it as often.
•

• Ex: Hexadecimal : 16 digits (0-9 plus a-f)
•

• What is
•

• 10011 in base 3?
•

• 1 * 3^0 + 1 * 3^1 + 1 * 3^4 = 85

COMP-202 - Introduction 120

Converting a number to binary
• To convert a number from base 10 to binary, you can

use a “greedy” algorithm:
•

• Basically, try to take as many from the bigger
columns as possible (this works for going to other
bases as well)

COMP-202 - Introduction 121

Example: Convert 523 to binary
• Start with big powers of 2:
•

• 2^10 = 1024 --->this doesn't fit
• 2^9 = 512 ---> this fits. So we write a 1 in the 2^9

column (i.e. the 10th column from the right).
Subtracting this, we are left with 9

• 2^8 = 256-->doesn't fit into 9
• 2^7 = 128, 2^6=64,2^5=32,2^4=16, doesn't fit
• 2^3 = 8 ---> fits into 9, write a 1 in the 2^3 column.

Left with 1
• 2^2, 2^1--> don't fit.
• 2^0 fits.

COMP-202 - Introduction 122

Example: Convert 523 to binary
• 1000001001

COMP-202 - Introduction 123

Converting from arbitrary base
to another

• What if I wanted to convert a base-n number to
base-m

•

• A good way to do this is to first convert base-n to
base-10 and then convert the base-10 number to
base-m

COMP-202 - Introduction 124

Arithmetic in other bases
• To do arithmetic in other bases, you use the same

procedures that we learned in kindergarten.
•

• The only difference is that you have to remember the
possible digits are different.

•

• This means, for example, that if you are adding
numbers in binary, and you get “2” that you actually
have to write “10” ---> But this means you will most
likely have to carry a number!

Part 3: Programming
Languages

COMP-202 - Introduction 126

Programming Languages (1)
•We need to expresses our ideas in a form that a
computer can understand: a program
•A programming language specifies the words and
symbols that we can use to write a program

– e.g. “red” belongs to English; “rouge” belongs to
French

•A programming language employs a set of rules that
dictate how the words and symbols can be put together
to form valid program statements
–e.g. “Banana red and” in not a valid statement in English.

COMP-202 - Introduction 127

Programming Languages (2)
•Computers are very intolerant of incorrect programming
language statements
–Humans are much more tolerant of incorrect natural language
statements

• You understand “The kiten is cute” even though kitten
is mispelled.

COMP-202 - Introduction 128

Syntax and Semantics
•The syntax rules of a language define what words and
symbols are valid in this language, and how they can be
combined to make a valid program

– “The kiten is cute” is not syntactically correct.

•The semantics of a program statement define what
those words, symbols, and statements mean (their
purposes or roles in a program)

• “Banana red and.” is not semantically correct.

COMP-202 - Introduction 129

Machine Language
•Each instruction that a CPU understands is represented
as a different series of bits

• The set of all instructions that a CPU understands
directly forms the machine language for that CPU

•Each CPU type understands a different machine
language
–In other words, for each different model of CPU, a given
series of bits could mean a different instruction

• For example, on an x86-compatible CPU (Intel,
AMD), the series of bits 10101010 could mean
ADD, while on a PowerPC CPU (old Macs,
PlayStation 3) it could mean LOAD

COMP-202 - Introduction 130

Machine Language Example
•Here are the first 20 bytes of a machine language
program that:
–asks the user to enter an integer value using the
keyboard
–reads this value from the keyboard
–adds one to this value, and
–displays the new value to the screen01111111 01000101 01001100 01000110 00000001

00000001 00000001 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000
00000000 00000010 00000000 00000011 00000000

More the 6500 bytes in total!

COMP-202 - Introduction 131

Do you think it would be fun or
easy to write a program in

COMP-202 - Introduction 132

Machine Language
Disadvantages

•Very tedious and confusing: machine language is
extremely difficult for humans to read
•Error-prone
–If you change one bit from 1 to 0 (or vice-versa), or
forget a bit, your program's behavior will likely be not
even close to what you expected
–Moreover, errors are hard to find and correct
•Programs are not portable
–Running the program on a different processor or CPU
requires a complete rewrite of the program

COMP-202 - Introduction 133

High-Level Languages (1)
•To make programming more convenient for humans,
high-level languages were developed
•No CPU understands high-level languages directly
–Programs written in these languages must all be
translated in machine language before a computer can
run them (that's what a compiler is for)
•Basic idea:
–Develop a language that looks like a mix of English and
mathematical notation to make it easier for humans to
read, understand, and write it
–For each CPU type, develop a program that translates a
program in high-level language to the corresponding
machine language instructions (a compiler)

COMP-202 - Introduction 134

Compilers

CPU 1 CPU 2

Source code
(high-level)

Compiler
(to CPU 1)

Compiler
(to CPU 2)

Binary code
(CPU 1)

Binary code
(CPU 2)

COMP-202 - Introduction 135

Interpreters (1)
•An interpreter is another kind of program. It takes
source code and translates it into a target language
–However, the target language instructions it produces are executed
immediately
–No executable file is created

COMP-202 - Introduction 136

Interpreters (2)

CPU 1 CPU 2

Source code
(high-level)

Interpreter
(for CPU 1)

Interpreter
(for CPU 2)

COMP-202 - Introduction 137

Java combines a compiler with
an interpreter

• Java compiler (javac, included in JDK 6) takes
source and translates it into bytecode

foo.java
(Java)

foo.class
(bytecode)

javac

foo.class can than be executed using an
interpreter, the Java Virtual Machine (JVM)

COMP-202 - Introduction 138

Programming Errors
•A program can have three types of errors
•Compile-time errors: the compiler finds problems with
syntax and other basic issues
•Run-time errors: a problem occurs during program
execution, and causes the program to terminate abnormally (or
crash)
–Division by 0
•Logical errors: the program runs, but produces incorrect
results

• celcius = (5.0 / 9.0) * fahrenheit - 32;
 // Incorrect equation; should be
 // (5.0 / 9.0) * (fahrenheit – 32)

COMP-202 - Introduction 139

Development Life Cycle

Run
program0 errors

Syntax
errors

Logic and
run-time
errors

Compile
program

Write
program

•

•Errors may take a long time to debug!
–Important Note: When you compile for the first time and see 150
errors, do not despair. Only the first 1 or 2 errors are relevant. Fix
those and compile again. There should be fewer errors (like 50).
Repeat until there are no more errors.

COMP-202 - Course Details 140

Exercises to practice this at
home

• A) Practice breaking the following tasks into smaller
pieces. Make sure the pieces are small enough that
you can manage them.

• 1)Choosing what channel to watch on TV
• 2)Writing a 5 paragraph essay
• 3)Studying for an exam
• 4)Arguing a speeding ticket in court
•

• B) Look at the resources on the course website and try
to compile the HelloWorld program

• Note: The file MUST be called HelloWorld.java (case-
sensitive) or else the program will not compile

• C)Take any number in base 10 and convert it to several
other bases.

COMP-202 - Course Details 141

Next Class
• How to store more complex

operations in memory using
variables

•

• How to group complex operations
together using methods

