
Student Name: Student Number:

Section:

Faculty of Science
Final Exam

COMP-202A - Introduction to Computing I (Fall 2007)

Friday, December 14, 2007 Examiners: Mathieu Petitpas [Section 1]
14:00–17:00 Prof. Clark Verbrugge [Section 2]

Ladan Mahabadi [Section 3]
Associate Examiner: Prof. Laurie Hendren

Instructions:

• DO NOT TURN THIS PAGE UNTIL INSTRUCTED

• This is aclosed book exam.

• Calculators are allowed (though you should not need one).

• Translation dictionaries are allowed (human languages only).

• You must return the exam paper.

• Answer all questions on the exam paper; if you need additional space, use the last page or the booklets
supplied and clearly indicate where each question is continued.In order to receive full marks, you must
show all work.

• This exam has22 pages including this cover page. Note that for your convenience the lastpage has a generic
list of useful classes and methods that may be helpful in programming questions.

1 2 3 4 5 6 7 8 9 SubTotal

/2 /2 /2 /3 /4 /1 /3 /2 /3 /22

10 11 12 13 14 15 16 17 SubTotal

/4 /4 /6 /5 /5 /5 /4 /5 /38

18 19 20 SubTotal

/12 /15 /13 /40

Total

/100

1



COMP-202A Fall 2007 Exam Page 2

Section 1 - Short Answer Questions

1. In one or two sentences, explain the differences between the concepts in each of the following pairs. BE[2]
BRIEF; overly long answers will be grounds for mark deductions.

(a) Primitive types and reference types, with regards to how they are stored in memory.

(b) Classes and objects.

2. The following question deals with exceptions. [2]

(a) In one or two sentences, explain the difference between checked and unchecked exceptions. BE BRIEF;
overly long answers will be grounds for mark deductions.

(b) List one unchecked exception type and one checked exception typedefined in the Java platform.



COMP-202A Fall 2007 Exam Page 3

3. There is a problem in this code fragment; explain what it is and how to fix it. [2]

int i = 0, sum = 1;
do {

boolean more;
i++;
sum *= i;
if (i > 6)

more = false;
else

more = true;
} while(more);
System.out.println(sum);

4. Consider the following array declaration: [3]

int[] anArray = new int[n];

Suppose thatn has already been assigned some non-negative input value and the programmer would like to
apply the methodf(int) to each element of the array. Give two ways of doing so, one based on afor loop,
and one based on afor-each loop.



COMP-202A Fall 2007 Exam Page 4

5. Consider the following program: [4]

public class TrickOverload {
public int foo(int a, int b) {

System.out.println("add(int, int)");
return a + b;

}

public double foo(double a, double b) {
System.out.println("add(double, double)");
return a * b;

}

public double foo(double a, int b) {
System.out.println("add(double, int)");
return a - b;

}

public static void main(String[] args) {
TrickOverload load;
int i1;
int i2;
double d;

load = new TrickOverload();
i1 = 2;
i2 = 3;
d = 4;

System.out.println("The result is: " + load.foo(i1 * i2, d));
}

}

The program compiles without error and terminates normally when it is executed; what does it display?



COMP-202A Fall 2007 Exam Page 5

6. In one or two sentences, explain the purpose of the base case in a recursive method. BE BRIEF; overly long[1]
answers will be grounds for mark deductions.

7. The following code does not compile for some reason. Explain what the problem is and show two different[3]
ways of modifying the code to fix it.

public readSerialNumber(java.io.File someFile) {
java.util.Scanner scan = new java.util.Scanner(someFile);
String internalCode = "";
for (int i = 0; i < 3; i++) {

internalCode += scan.next();
}
return internalCode;

}

8. List two differences between constructors and other methods of a class. [2]



COMP-202A Fall 2007 Exam Page 6

9. A student writes the following code, intending it to display every other character in a givenString starting [3]
from the firstchar. Sadly, while it compiles, it does not actually work. Explain what the problem(s) is (are)
and rewrite the loop to work as intended.

String input = "CAAOAAMAAAP";
for (int i = 0; i < input.length(); i++)
{

System.out.print(input.charAt(i));
input = input.substring(i+2);

}
System.out.println();

Total Marks for Section 1: 22



COMP-202A Fall 2007 Exam Page 7

Section 2 - Long Answer Questions

10. Consider the following program: [4]

public class Scope {
private double d;

public Scope(double d) {
this.d = d;

}

public double foo(int i) {
if (i < 0) {

double d = i * i * i;
System.out.println("d (foo) == " + d);

} else {
d = i * i;
System.out.println("d (foo) == " + d);

}
return d;

}

public static void main(String[] args) {
Scope s;
double d;

s = new Scope(2.0);
d = 5.0;

System.out.println("foo(-2) == " + s.foo(-2));
System.out.println("d (main) == " + d);

}
}

What will be displayed to the screen when this program is executed?



COMP-202A Fall 2007 Exam Page 8

11. The following program will not compile; the compiler apparently complains about some sort of “typing” or [4]
“casting” problems.

import java.util.*;
public class CigarettePack {

ArrayList cigs;

public CigarettePack() {
cigs = new ArrayList();

}
public void addCigarette(Cigarette c) {

cigs.add(c);
}
public Cigarette getCigarette() {

Cigarette c;
if (cigs.size() > 0)

c = cigs.remove(0);
else

c = null;
return c;

}
public String toString() {

String result = "pack of [";
for (int i=0; i < cigs.size(); i++) {

Cigarette c = cigs.get(i);
result += ((i==0) ? "" : ",") + c.toString();

}
return result + "]";

}
}

(a) Describe how to fix the program so it works without resorting to generics.

(b) Describe how to fix the program so it uses generics and does not require or contain any casting.



COMP-202A Fall 2007 Exam Page 9

12. On a cold, freshly-snowed winter day, Professor Merlin is walking home. As he’s approaching his house, he[6]
estimates that he isn steps away from his door steps and tries to calculate what his last(nth) step would be
(left or right) if he were to start with his right foot. Write amain() method that prompts the user forn and
then proceeds with listingRight, Left, Right, Left, ... for n steps and then displays that last
step. For instance, ifn = 4, then yourmain() method should display:

Right, Left, Right, Left
Left foot takes the last step!



COMP-202A Fall 2007 Exam Page 10

13. Consider the following program. Which of the lines A through I below have correct syntax and will compile?[5]

public class Foo {
private int x;
private static int y;

public Foo(int z) { x = z; }

public static int m1(int x) {
Foo f = new Foo(1);
y = y+x;
System.out.println(m2()); /* Line A */
System.out.println(f.m2()); /* Line B */
System.out.println(Foo.m2()); /* Line C */
return y;

}
public int m2() {

Foo f = new Foo(2);
x = m3(0); /* Line D */
x += f.m3(3); /* Line E */
x += Foo.m3(1729); /* Line F */
return y+x;

}
public int m3(int y) {

return y+x;
}
public static void main(String[] args) {

Foo f = new Foo(0);
m1(0); /* Line G */
f.m1(3); /* Line H */
Foo.m1(1729); /* Line I */

}
}



COMP-202A Fall 2007 Exam Page 11

14. Write the body of a method with the following header: [5]

public static boolean alternates(int[] array)

This method returnstrue if the values inarray alternate between negative and non-negative numbers, and
false otherwise. That is, a negative number must occur immediately before and immediately after each
positive number inarray, and a positive number must occur immediately before and immediately after each
number in thearray. The first value inarray may be either a positive or negative value. You should
consider that the values in an array of size1 or less alternate, and you should consider0 to be a positive
number.

Examples:

• if array is {-4, 7, -9, 2, -3, 10, -3}, the method returnstrue.

• if array is {6, -2, -9, 4, -11}, the method returnsfalse because the value which occurs
immediately after-2 is not positive.



COMP-202A Fall 2007 Exam Page 12

15. What is the control flow of the following code? Indicate the order of statements from the statement numbers[5]
given; if statements are not in sequence explain each change.

/* */ try {
/* */ try {
/* 1 */ int i = 0,j=7;
/* 2 */ java.util.Random random = null;
/* 3 */ int[] ids = new int[10];
/* 4 */ System.out.println("Starting");
/* 5 */ System.out.println(random.nextInt(j/i+ids[10]));
/* 6 */ System.out.println("Done..?");
/* */ } catch(ArithmeticException ae) {
/* 7 */ System.out.println("That can’t happen!");
/* */ } catch(ArrayIndexOutOfBoundsException aie2) {
/* 8 */ System.out.println("How could this be?");
/* */ } finally {
/* 9 */ System.out.println("Are we done here?");
/* */ }
/* 10 */ System.out.println("I think it’s done, maybe");
/* */ } catch(ArrayIndexOutOfBoundsException aie1) {
/* 11 */ System.out.println("This is impossible surely!");
/* */ } catch(NullPointerException npe) {
/* 12 */ System.out.println("I, make a mistake?");
/* */ } finally {
/* 13 */ System.out.println("Are we done now?");
/* */ }
/* 14 */ System.out.println("Are we printed out?");



COMP-202A Fall 2007 Exam Page 13

16. Professor Fibo would like to simulate the shape of snail shells. To do so,he draws two small squares of size1 [4]
next to each other. On top of both of these, he draws a square whose side is of length2 (= 1 + 1). Then, he
draws a new square that is adjacent to one of the unit squares and the square of side2, giving it a side length
of 3. He continues adding squares around the perimeter such that each new square has a side which is as long
as the sum of the previous two squares’ sides. Finally, he draws a quarter of a circle in each square as shown
in Figure 1 to form the snail shell.

1

2

3

5

8

Figure 1: Snail shell

The sides of the generated squares form the following sequence:1, 1, 2, 3, 5, 8, 13, 21, 34, . . .. More generally,
note that each number in the sequence is generated by adding the two previous values in the sequence. Namely:

F (0) = 1
F (1) = 1
F (n) = F (n − 1) + F (n − 2), for all n > 1

Help Professor Fibo with his task by implementing a method calledgenerateFibo() that takes a non-
negative integern as input, and uses aRECURSIVE algorithm to display the firstn values in the above
sequence.

Your code should be contained in a single method, with the following header:

public int generateFibo(int n)



COMP-202A Fall 2007 Exam Page 14

17. Describe the output of the following program assuming the program is invoked as: [5]
java MysteryProgram 11

public class MysteryProgram {

public static void main(String[] args) {
int x = Integer.parseInt(args[0]);
String s = (x <= 0) ? "0" : strangeMethod(x);
System.out.println(s);

}

public static String strangeMethod(int x) {
if (x == 0)

return "";
return strangeMethod(x / 2) + ((x % 2 == 0) ? "0" : "1");

}
}

Total Marks for Section 2: 38



COMP-202A Fall 2007 Exam Page 15

Section 3 - Programming Questions

18. Mismatched brackets are a common problem in programming. Many programming environments (IDEs)[12]
highlight these kinds of errors automatically, but in less nice environments, separate tools must be developed
to check for common errors.

Write a programCheckBrackets that receives as command-line input the name of a text file to process.
For example, your program would be invoked by typing:

java CheckBrackets SomeOtherProgram.java
in order to check the brackets in the fileSomeOtherProgram.java. Your program should read through
the file and ensure each ‘{’ character is matched by a corresponding ‘}’ character, and that each ‘(’ character
is matched by a corresponding ‘)’ character. It should then print a message indicating how many brackets are
unmatched for each type. For example, suppose the fileSomeOtherProgram.java contains this:

public class SomeOtherProgram {
public void foo() {

boolean b = false;
for (int i = 0; i < 7; i++) {

if (!b { // notice missing right bracket
System.out.println("i = " + i);
b = true;

// notice missing ending brace
}

}
// notice missing ending brace

Then running your program and its output should look like so:

$ java CheckBrackets SomeOtherProgram.java
unmatched (: 1
unmatched {: 2

Note that you need to verify that there enough of each kind of left bracket to match the number of right
brackets (and vice-versa). In particular, you do not need to check that the two kinds of brackets are properly
nested, nor do you need to verify that the code between matching bracketsmakes any sense. You can assume
that no comments orString constants contain brackets of any form.



COMP-202A Fall 2007 Exam Page 16

USE THIS PAGE IF YOU NEED ADDITIONAL SPACE FOR YOUR PROGRAM:



COMP-202A Fall 2007 Exam Page 17

19. Internally, the.class files store method signatures inStrings using a special code. The list of argument[15]
types and then the return type are encoded; each basic type is abbreviated as a letter, one of{Z, B, C, S, I, J,
F, D} for booleans,bytes,chars,shorts,ints,longs,floats, anddoubles respectively, and the
syntax “Lfullclassname;” is used for specifying objects. For example, the following two methods:

long bar(int index,String s,boolean b)
String foo(java.util.Random,long q,byte c,boolean b)

would have respective internal signatures:

(ILjava.lang.String;Z)J
(Ljava.util.Random;JBZ)Ljava.lang.String;

where the part in brackets are the arguments, in the first case anint, a String and aboolean, and in
the second, aRandom object, along, abyte, and aboolean. The rest of theString after the brackets
indicates the return type in the same encoding. In the first case, ‘J’ is usedto indicate that along value is
returned, and in the second case, aString.

Write a method calledencode() which receives as input aString representing a method header (as in the
example above: one line, no body, no access modifiers, no exceptions declared) and which emits aString
representing the encoded internal signature. For example, invoking your method like:

encode("String encode(String s)");

should produce theString result:

(Ljava.lang.String;)Ljava.lang.String;

You can assume any non-primitive types are either in thejava.lang package, or fully-qualified names
(complete package name already specified). You can further assume no arrays are used, either as arguments
or return types, and that the input method declaration does not have a return type ofvoid. You may use Java
library methods, as well as write any private helper methods you find convenient.

Hint: Notice that in the input method declaration, the return type is first, and separated from the method name
by a single space character. After the method name (which, like all identifiersmay not contain whitespace
characters), the formal parameter list has parameters separated by commas, and for each parameter, its type is
separated from its name by a single space. A fully-qualified object type will include at least one period (‘.’)
character, while one that is not fully-qualified will have no period characters. You can use these facts to come
up with a way of extracting the list of parameter types and return type and producing the correct output.



COMP-202A Fall 2007 Exam Page 18

USE THIS PAGE IF YOU NEED ADDITIONAL SPACE FOR YOUR PROGRAM:



COMP-202A Fall 2007 Exam Page 19

20. At MVP University, each student registered in the Introduction to Computing I course is assigned to one TA[13]
for the duration of the course. Each student goes to the tutorial sessionsoffered by the TA he or she has been
assigned to (every TA offers every tutorial session), and all of his orher assignments are graded by that TA as
well.

For this question, you will write a part of a program that instructors who teach Introduction to Computing I at
MVP University can use to randomly assign students to tutorial groups. As well as a class containingmain()
to drive the whole program, it consists of two primary classes:

• A class calledTutorialGroup; objects which belong to this class represent a tutorial group led by a
TA and to which students can be assigned.

• A class calledAllocationScheme; objects which belong to this class assign students to tutorial
groups when theirallocate() method is called.

TheTutorialGroup class has already been written, and has the following functionality:

public class TutorialGroup {

/* Creates an empty tutorial group led by the given TA. */
public TutorialGroup(String TA) { /* Body */ }

/* Returns the TA leading this tutorial group. */
public String getTA() { /* Body */ }

/* Returns the student at the specified index. */
public String getStudent(int index) { /* Body */ }

/* Returns the total number of students in this group. */
public int getNumberStudents() { /* Body */ }

/* Inserts the given student into the tutorial group. */
public void add(String studentInfo) { /* Body */ }

}

For this question, you must write the definition of theAllocationScheme class. This class class de-
fines only one instance method, calledallocate(). Theallocate() method takes as its parameters an
ArrayList of Strings calledTAs, and anotherArrayList of Strings calledstudents. TAs con-
tains the names of all TAs who will lead tutorial sessions, andstudents contains the identifying information
for all students registered in the course.

Theallocate() method returns anArrayList of TutorialGroup objects. This listMUST contain
exactly as manyTutorialGroup objects as there are TA names inTAs; moreover, all the students rep-
resented byStrings in students MUST have beenadd()ed to exactly one of theTutorialGroup
objects in the returnedArrayList, and the students assigned to eachTutorialGroup MUST be se-
lected at random. Note that youMUST NOT change the parameter data; when the method returns, the input
ArrayLists MUST contain the same elements in the same order as before the method was called.

Your solutionMUST ensure an even allocation, so each TA has as close to the same number of students in
theirTutorialGroup as possible (given that the number of students may or may not be a multiple of the
number of TAs).



COMP-202A Fall 2007 Exam Page 20

USE THIS PAGE IF YOU NEED ADDITIONAL SPACE FOR YOUR PROGRAM:

Total Marks for Section 3: 40

Total Marks: 100



COMP-202A Fall 2007 Exam Page 21

USE THIS PAGE IF YOU NEED ADDITIONAL SPACE. CLEARLY INDICATEWHICH QUESTION(S) YOU
ARE ANSWERING HERE.



COMP-202A Fall 2007 Exam Page 22

LAST PAGE: SUMMARY OF METHODS FOR YOUR CONVENIENCE:

• java.lang.String

public int length();
public char charAt(int);
public boolean equals(java.lang.Object);
public boolean equalsIgnoreCase(java.lang.String);
public int compareTo(java.lang.String);
public boolean startsWith(java.lang.String);
public boolean endsWith(java.lang.String);
public int indexOf(int);
public int indexOf(int, int);
public int indexOf(java.lang.String);
public int indexOf(java.lang.String, int);
public java.lang.String substring(int);
public java.lang.String substring(int, int);
public java.lang.String replace(char, char);
public java.lang.String replaceFirst(java.lang.String, java.lang.String);
public java.lang.String replaceAll(java.lang.String, java.lang.String);
public java.lang.String[] split(java.lang.String);
public java.lang.String toLowerCase();
public java.lang.String toUpperCase();
public java.lang.String trim();
public java.lang.String toString();

• java.util.Scanner

public void close();
public java.util.Scanner useDelimiter(java.lang.String);
public boolean hasNext();
public java.lang.String next();
public boolean hasNextLine();
public java.lang.String nextLine();
public java.lang.String findInLine(java.lang.String);
public boolean nextBoolean();
public byte nextByte();
public short nextShort();
public int nextInt();
public long nextLong();
public float nextFloat();
public double nextDouble();

• java.util.ArrayList

public int size();
public boolean isEmpty();
public boolean contains(java.lang.Object);
public int indexOf(java.lang.Object);
public int lastIndexOf(java.lang.Object);
public java.lang.Object[] toArray();
public java.lang.Object get(int);
public java.lang.Object set(int, java.lang.Object);
public boolean add(java.lang.Object);
public void add(int, java.lang.Object);
public java.lang.Object remove(int);
public boolean remove(java.lang.Object);
public void clear();


