
GENERAL INSTRUCTIONS AND REGULATIONS

FOR ASSIGNMENTS

COMP-202B, Summer 2011

PREAMBLE

All assignments that students will submit as part of this course are subject to the instructions and regulations
specified in this document.

Assignments specifications MAY impose additional instructions and regulations, or overrule any of the
following instructions or regulations; all such cases will be explicitly mentioned in the relevant assignment
specifications.

In cases where an assignment specification contains instructions or regulations which conflict with those
listed in this document, the instructions or regulations contained in the assignment specification shall have
precedence.

SUBMISSION PROCEDURE

All assignment submissions MUST be sent to the graders via the appropriate myCourses submission box.
In particular:

Assignments not submitted through mycourses, including those sent to instructors or TAs by
email, will not be graded unless otherwise agreed upon with the instructor beforehand.

GENERAL SUBMISSION GUIDELINES

• Make sure you always submit the .java file rather than the .class file. If you submit the .class file, the
TA will be unable to grade your assignment because he/she can not see what you have written.

• Any question with a written answer should be in a plain text (i.e. txt) file. No word documents or
pdfs.

• You must follow the case-sensitivity requirements given on the assignment. For example, if the assign-
ment says to write a class HelloWorld, you need to write the class HelloWorld and not HELLOWORLD.

ILLEGAL COLLABORATION AND USE OF SOURCE CODE

Assignments MUST be done INDIVIDUALLY; you MUST NOT work in groups, you MUST NOT
copy any student’s submission or any part thereof, and you MUST NOT allow another student to copy
your submission or any part thereof.

1

In addition, unless otherwise stated, all source code you submit MUST have been written ENTIRELY by
you; you MUST NOT submit source code which has been written in whole or in part by any other party,
even if this source code is in the public domain or you have permission from its author to use and/or modify
it in your work (obviously, this prohibition does not apply to source code supplied by instructors explicitly
for this purpose).

Performing any of the preceding actions constitutes illegal collaboration and/or use of source code, which is
a serious violation of these instructions and regulations and will not be tolerated.

Graders will randomly check submissions for suspicious similarities. Additionally, instructors will use auto-
mated software similarity detection tools to compare each submission to every other submission. However,
note that these tools will be used solely to determine which submissions should be manually compared for
similarity; instructors will NOT accuse anyone of illegal collaboration based solely on the output of these
tools. Finally, instructors can request at any time that you explain the workings of any source code you
submit for an assignment.

Students caught collaborating illegally and/or using source code they did not write themselves illegally on
any assignment question will be formally accused of academic fraud and their cases will be referred to the
appropriate university officials for disciplinary action.

RESTRICTIONS

Every program you submit MUST AT LEAST compile and run using the Sun/Oracle JDK 6 installed on
the PCs found on the third floor of Trottier building.

There are some cases where it is OK to experiment with more advanced features of Java. There are other
cases where it will not be. Generally, it is best to stick to what was presented so far in class, unless your
instructor has specifically given permission for it. If you have any doubts about whether what you are doing
is allowed for the assignment, please consult Dan before the assignment is due.

When provided source code, you MUST NOT change any part which you have not been explicitly permitted
to change by the assignment specification.

PROGRAMMING STANDARDS

The following are general guidelines that you should follow when coding in Java. At the beginning, we won’t
enforce them as much, but will have higher expectations as the semester progresses.

INPUT/OUTPUT

• Output MUST be nicely spaced and easy to understand. In particular, the user of your program
MUST be able to understand the output WITHOUT looking at the source code of your program.
This implies that for each value you display, you MUST display a short message which explains briefly
the meaning of this value.

• Before your program reads a value from the keyboard, it MUST display a prompt describing what the
user is required to enter, the meaning of this value, which values are acceptable, and/or which values
are illegal.

• If a sample session is provided in the assignment specification, your program must match the output
format of the sample session EXACTLY.

2

IDENTIFIERS: VARIABLE, METHOD, AND CLASS NAMES

• Identifiers for variables and helper methods you write (that is, those whose implementation is not
required by the assignment specification) MUST be as meaningful as possible and follow the standard
upper-case/lower-case conventions. That is:

– Variable names MUST be entirely in lower-case, except for the first letter of each word in the
variable name other than the first word; those letters MUST be upper-case letters. There MUST
NOT be any characters between the last letter of a word within a variable name and the first letter
of the next word within the same variable name. Examples: counter, myNumber, myOtherNumber.

– Method names MUST follow the same convention as variable names. In addition, the first word
in a method name SHOULD be a verb. Examples: execute(), isCalculationComplete(),
getThisVariable().

– Class names MUST be entirely in lower-case, except for the first letter of each word in the class
name, including the first word, which MUST be upper-case letters. There MUST NOT be any
characters between the last letter of a word within a class name and the first letter of the next
word within the same class name. Examples: Example, MyClass, MyOtherClass.

– Constant names MUST be entirely in upper-case. There MUST be ONE underscore () between
the last letter of a word within a constant name and the first letter of the next word within that
constant name. Examples: CONSTANT, ANOTHER CONSTANT, YET ANOTHER CONSTANT.

• You MUST follow the method signature contracts described in the assignment specification for each
required method’s access modifier, return type, name (including case-sensitivity) and order and types
of the parameters it accepts; in other words, if the assignment specification asks you to write the body
of a method with signature public void myMethod(int i, double d), then the method you write
MUST be public, return void, be called myMethod (mymethod, MYMETHOD, or any other name is NOT
acceptable), and accept as parameters an int and a double in that order. This requirement is imposed
in order to allow instructors and graders to develop programs which call methods that you write, such
as automated testing programs used to assist in the grading of student submissions.

• Likewise, and for the same reasons, you MUST follow the class name contracts described in the
assignment specification, including case-sensitivity. For example, if the assignment specification asks
you to write a class called MyClass, the class you write MUST be named MyClass; it MUST NOT
be named myclass, MYCLASS, or any other name.

• Only declare variables your program actually uses.

• Do NOT use the same variable for different purposes. In particular, do NOT overwrite the value of
input variables (whether they are parameters to a method or variables in which your program stores
the values it reads from the keyboard).

PROGRAM STRUCTURE

• Good structure is important. You SHOULD decompose your methods into meaningful sub-methods
whenever this improves the clarity of your program. Also, you MUST avoid copying and pasting code
fragments if it is possible to turn them into a helper method.

• Code you submit MUST be indented in a systematic way that reflects how its statements are nested.
You will be taught in the lectures and/or in the tutorials how to properly indent your programs. You
can also consult the reference program for an example of how programs you submit SHOULD be
indented.

• Your programs MUST strictly separate user interface code (the code which handles input and output)
from application code (the code which actually performs the computations required by the assignment
specification). In particular, if user interface code and application code are part of the same method

3

(main(), for example), you MUST NOT start computing ANY of the results required by the as-
signment specification before ALL necessary inputs have been entered by the user. Additionally,
you MUST NOT display ANY of the results required by the assignment specification before ALL
required results have been computed.

• Ideally, application code SHOULD NOT be placed in the same method or class as user interface
code (however, note that this recommendation does not apply until methods have been covered in the
lectures).

• Loops MUST terminate as soon as possible; for example, a loop which verifies whether an array
contains a given value MUST stop as soon as it encounters that value, without looking at any further
values in the array.

• Nothwithstanding the previous point, the use of reserved words break and continue to control the
execution of loops is STRONGLY DISCOURAGED, as it makes the stopping condition of loops
unclear.

ACCESS MODIFIERS AND SCOPE

• Unless otherwise specified, all instance variables MUST be private, all required methods MUST be
public, and all helper methods (methods you write but are not required by the assignment specifica-
tion) MUST be private. Do not forget that not explicitly specifying an access modifier defaults to
an access modifier which is neither public nor private.

• All variables MUST be declared in the most restrictive scope possible. In particular, a variable which
is used to store intermediate values within a method and whose value is no longer needed once a method
returns MUST be declared as a local variable, and NOT as an instance or class variable.

• Variables local to a method SHOULD be declared at the beginning of the method in which they are
declared, although loop index variables for for loops MAY be declared in the initialization clause of
the for loop.

• Instance variables MUST be used ONLY to store part of the state of an object.

DOCUMENTATION

• Each of your methods MUST be documented in such a way that a person who reads your code can
easily understand what a method does and how it does it (if a method is very simple, explaining
the algorithm behind it is not necessary). These explanations should take the form of comments
inserted either BEFORE the method, and/or BEFORE each significant code fragment in the method.
AVOID writing these comments next to the line to which they pertain, as it makes the code harder
to read on narrow displays. These comments should be meaningful and BRIEF.

COMPILATION ERRORS

• Starting with Assignment 1, students who submit source code files for a given question which contain
compilation errors will get at most 25% of the value of that question. In other words, if, for a question
that is worth 20 marks, you submit a program which does not compile, your grade for that question
will be at most 5 marks. The reason this penalty is so harsh is that the computer tells you exactly
what the problem is, so you should be able to fix it yourse.f If you are having trouble getting your code
to compile, please consult Dan or one of the TAs.

4

Last update: 2011-05-08, 10:30 EDT

5

