
ASSIGNMENT 3

McGill Paint

COMP-202, Summer 2011

Due: Monday, June 13, 2011 (23:30)

You must do this assignment individually and, unless otherwise specified, you should follow all the general
instructions and regulations for assignments. Graders have the discretion to deduct up to 10% of the value
of this assignment for deviations from the general instructions and regulations.

Part 1 65 points
Part 2 35 points
Bonus 20 points

100 points total

Part 1 : Matrix Utilities

Beginning in this assignment, the 75% non-compilation penalty will apply. This means that if your code
does not compile, you will receive a maximum of 25% for the question. If you are having trouble getting your
code to compile, please contact Dan or one of the TAs or consult each other or the discussion boards.

In this part of the question, you will write several static methods that operate on a matrix (i.e. a 2d array)
Don’t worry if you don’t remember much about matrices as the math in this is not very related to that done
prior.

All your code for this section should go into a file MatrixUtilities.java in a class MatrixUtilities

Update Note: In the course of this assignment, you will deal with array of arrays very often. You can
think of the array of arrays as a matrix with the first index representing the vertical row and the second
index representing the horizontal row. You may assume that this matrix is rectangular although it is not
necessarily square. (No “jagged” arrays)

You should write the following methods:

• public static int[][] add(int[][] m1, int[][] m2) This method should return a new matrix
computed by adding the contents of m1 to the contents of m2.

• public static int[][] createFilledMatrix(int value, int height, int width) This method
should return a new matrix of size height and width in which each entry in the matrix has value value

• public static int[][] scaleMatrix(int[][] m, double scale) This method should take as in-
put a matrix m and a double scale and return a new matrix computed by taking each of the original
values of m and multiplying it by the factor scale. In the case of fractional values, it should truncate
the results (i.e. 1.99999 should be come 1)

1



• public static int[][] rotateLeft(int[][] m) This method should return a new matrix which
is the same as the original matrix but rotated to the left by 90 degrees. Your method should work for
any rectangular matrix.

• public static int[][] rotateRight(int[][] m) This method should return a new matrix which
is the same as the original matrix but rotated to the right by 90 degrees. Your method should work
for any rectangular matrix.

• public static int[][] horizontalMirror(int[][] m) This method should return a new matrix
which is the same as the original matrix but mirrored across the horizontal axis. In other words, the
top row of the original matrix should become the bottom row, the 2nd row should become the 2nd
most bottom row, etc.

• public static int[][] verticalMirror(int[][] m ) This method should do the same as horizontalMirror
except it should mirror vertically instead of horizontally.

Hint: Try to use some of the methods you’ve already written for this one.

• public static int[][] doubleSize(int[][] m) This method should return a new matrix with
each of its dimensions doubled in size. The way to do this is that every single value in the original
matrix should be duplicated 3 additional times so that it is present 4 times in the new matrix. Update:
This method is being moved to assignment 4. It is not required for assignment 3

• public static int[][] halfSize(int[][] m) This method should return a new matrix with each
of its dimensions halved in size. The way to do this is to “compress” the matrix by taking each 2 by 2
block of the original matrix, averaging the 4 values, and replacing it by the 1 average. You may assume
that the matrix has even dimensions in both directions.Update: This method is being moved to
assignment 4. It is not required for assignment 3

Part 2 : Image Manipulation

In this section, you will use the Matrix tools you wrote in the first part, along with some other tools provided
to you, to write an image manipulation program.

Before getting started writing code for this section, you should familiarize yourself with what is provided to
you.

First, you should first download the file Assignment3.zip and extract the files “Comp202ImageIO.java”,
“ImageManipulation.java”, “McGillPaint.java” and “rangers.jpg” from the course website. For this part,
you will only make changes to “ImageManipulation.java” Put all of these files in the same directory as the
MatrixUtilities.java

The next thing to do is make sure you can compile and run the program as it is. Try compiling the program
by typing:

javac Comp202ImageIO.java ImageManipulation.java McGillPaint.java MatrixUtilities.java

or

javac *.java

Note that the above operation will try to compile every java file in the current folder you are in, so it
will be slow if you have many files (if for example, you put all java files you’ve ever written into the same
folder)

The main method is in the class McGillPaint Try running this by typing java McGillPaint If you have
trouble running it from the console on a Mac, try running it via the program x11 instead. http://support.
apple.com/downloads/X11_Update_2006_1_1_3 On windows it should be identical as before. The program
works if you see the Rangers beautiful logo on your screen.

Page 2



The point of this question is going to ask you to make various manipulations to the image in memory. For
example, one method you write will convert the image from a colour image to black and white. These
methods sound complex, but will mostly be applications of the matrix utilities method you wrote in the
previous section.

Background on images

There are many ways to store a colour image on a computer. Normally, however, one thinks of the screen as
a a matrix of pixels. Each pixel is a certain colour, and the colour is stored by representing a red, a green,
and a blue component. These three colours are sort of like the primary colours of computers. Each one of
these components is an integer from 0 to 255. Here are some example colours

Red component Green Component Blue Component Colour
255 0 0 red
0 255 0 green
0 0 255 blue
0 0 0 black

255 255 255 white
255 255 0 yellow
0 255 255 aqua

255 0 255 violet

(You can try out more values at http://www.colorschemer.com/online.html)

Each of these numbers ranges from 0-255. The number of bits needed to fit this is 8. Since there are 3
components, the total size of a pixel would be 24 bits. One odd thing about this, is that and int on a
computer is normally 32 bits. People working with images decided that rather than wasting the additional 8
bits, they could use the remaining 8 bits to represent an alpha channel. The alpha channel controls whether
an image is transparent or not. We will not worry about the alpha channel for this assignment.

So typically an image in memory can be thought of as 4 two dimensional arrays. One for alpha, one for red,
one for green, and one for blue.

The upper left corner of an image is normally the “origin” of an image and the x values increase to the right
while the y values increase down.

What has been provided

You have been provided with a couple of utility methods to make reading and writing from files more natural.
These are inside the file Comp202ImageIO.java

The methods provided are the following:

• public static int[][] loadImage(String inputFile) This method will load the image with the
path inputFile It will return a 2d array. Recall that a 2d array is an array where every element is an
array. The first array is the alpha array, the second array is the red array, the third array is the green
array, and the fourth array is the blue array.

One thing interesting is that each of these separate arrays is actually a 1d array. This is an optimization
that Java does to make things run faster. This 1d array is the normal image grid rearranged so that
all the columns, are following each other on one row. For example, if the image is 5 rows by 3 columns,
then the resulting array would be size 15 where the first 3 columns are row 1 the next 3 columns are
row 2, etc.

If you want to go from 1d coordinates to 2d coordinates, a very useful transformation is that the value
stored in the ith row and jth column shows up in location i ∗ width+ j in the 1 dimensional array.

Page 3



• public static int getImageWidth (String inputFile) Note: NOT getWidthImage as pre-
viously written This method will calculate the width of the given image file.

• public static int getImageHeight (String inputFile) Note: NOT getHeightImage as pre-
viously written This method will calculate the height of the given image file.

• public static BufferedImage getBufferedImage(int[][] imageData, int height, int width)
You do not need to call this method although it is used by other code given to you.

• public static void savePng(int[][] imageData, int height, int width, String filename)
You do not need to use this method at all. If you wish to play around with things (for fun) you can
use it to save a png file.

In addition to what is given here, the program is set up, so that whatever is present in the instance variable
imageData of the ImageConverter class and the end of the constructor will be displayed to the screen.
So when you are testing your methods, you should modify the constructor so that it calls the appropriate
methods you’ve written.

What you have to do

You will have to write several methods. If you did the first part correctly, most of these methods will not
be very long. Most of the methods will modify the instance variable imageData by individually modifying
each of the 4 fields in it. Feel free to add any additional instance variables or helper methods.

• A constructor ImageConverter() . The constructor should take as input a String representing the
filename to load and a String[] args. (Don’t worry about args for now)

The method should call the method loadImage provided to you with the given file and store the results
into the instance variable imageData. It should also store the width and height as instance variables
somewhere. You may, if you wish, add additional instance variables if you find them useful.

• Two getters, getWidth() and getHeight() which should return the width and height of the image
respectively. These methods are already present in the file ImageConverter.java but you will have to
update them to no longer be fixed sizes.

• A method doubleSize (see update!) This method should double the size of the image. It can do
this by calling the method you wrote in MatrixUtilities.java on imageData[0] , imageData[1] ,
imageData[2] , and imageData[3] . It should then produce a new 2d array from the results and store
a reference to this array into imageData Update: This method is being moved to assignment
4. It is not required for assignment 3

• A method halfSize (see update!) This method should halve the size of the image referenced by
imageData using a similar transformation to that done on matrices in part 1. Update: This method
is being moved to assignment 4. It is not required for assignment 3

• A method rotate90DegreesClockwise This method should rotate the image referenced by imageData
90 degrees clockwise. Remember that this will affect the image width and height and you should change
instance variables accordingly.

• A method rotate90DegreesCounterclockwise This method should rotate the image referenced by
imageData 90 degrees counter-clockwise. Remember that this will affect the image width and height
and you should change instance variables accordingly.

• A method flipHorizontal() This method should flip the image referenced by imageData across the
horizontal axis.

• A method flipVertical() This method should flip the image referenced by imageData across the
vertical axis.

Page 4



• A method convertToBlackAndWhite() (see update!) The way to convert an image to black and white
is by assigning to each pixel the average value of the red,green, and blue components. For example, if
the original image had 200 for red, 150 for blue, and 100 for green, then the new image should have
150 for all 3. Update: This method is being moved to assignment 4. It is not required for
assignment 3

This method should convert the image referenced by imageData to black and white.

• A method getNegativeImage() (see update!) One can convert a black and white image to a negative
image by “flipping” the values of all components. To do this, each component of each pixel should have
the value 255− x where x was the original value. Write a method getNegativeImage() that converts
a black and white image to the negative of the image. Update: This method is being moved to
assignment 4. It is not required for assignment 3

Hint: If you are clever about things, you can use the methods in MatrixUtilities here
once again to avoid writing much code.

Bonus (20 points)

The bonus will involve adding additional functionality to both the MatrixUtilities class as well as the
ImageConverter class. It will require you to write 2 methods, one in each class.

In MatrixUtilities.java add the following method:

public static int[][] rotate(int[][] m, double degrees) This method should return a new matrix
which is the original matrix rotated clockwise by degrees . You may assume for this that the matrix is
square. Elements of the matrix that are away from the middle and would not be part of the resulting matrix
(such as corner elements) can be assigned to be 0.

To figure out what value to put, you may use the following formula:

In the resulting matrix, the value at the ith row and jth column will come from the value in the k row and
l column of the original matrix where:

k = (i− (width/2))× cos(degrees× π

180
) + (j − height/2)×−sin(degrees× π

180
) + width/2

l = (i− (width/2))× sin(degrees× π

180
) + (j − height/2)× cos(degrees× π

180
) + height/2

Note that since we are assuming a square matrix, that width and height are the same.

Then, in ImageConverter.java add the following method:

rotate(double degrees) This method should rotate a square image referenced by imageData by degrees
clockwise. It is okay to set the new corner areas to be black.

What To Submit

confession.txt - You should write in this file any information that you think is useful for the
TA to mark the assignment. This should include things you were not sure of as well as parts of
your code that you don’t think it will work. Of course, like a confession, this will draw the TA’s
attention to the part of your code that doesn’t work, but he/she will probably be more lenient
than if he/she has to spend a lot of time looking for your error. It demonstrates that even though
you couldn’t solve the problem, you understand roughly what is going on.
MatrixUtilities.java
ImageConverter.java

Page 5


