
 1 1 1 

 
Symbols for nothing: 

 

Different symbolic roles of zero and 
 their gradual emergence in Mesopotamia 

 
 

Dirk Schlimm and Katherine Skosnik 
 

Department of Philosophy, McGill University, Montreal 
 
 

September 30, 2010 
 
 

Abstract 
 

Zero plays a number of different roles in our decimal place-value system. To allow for a 
nuanced discussion of the importance of zero, these roles should be distinguished 
carefully. We present such a differentiation of symbolic roles of zero and illustrate them 
by looking at the use of symbols for zero in ancient Mesopotamia. Old and Late 
Babylonian mathematicians used a place-value system (like ours, but with base sixty 
instead of ten), but did not use zeros in the way we do now. This shows that our current 
uses of zero are not a necessary consequence of the adoption of a place-value system and 
that the lack of a zero does not necessarily render a place-value system unusable.1 

                                                
1  We would like to thank Rachel Rudolph for her comments on an earlier draft of 
this paper. Work on this paper was funded in part by Social Sciences and Humanities 
Research Council of Canada (SSHRC). 
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1.  Introduction 
In recent years philosophy of mathematics has begun to pay more attention to 
mathematical practice, both contemporary and historical. This is evidenced by the 
recently edited collections by Ferreirós and Gray (2006), Mancosu (2008), and van 
Kerkhove (2009). With this development, the use of notation has also come to receive 
more attention. This is not to say that these philosophers adhere to any particular 
formalist philosophy of mathematics, but rather that they recognize the fact that notation 
is one of the main tools of working mathematicians. This point has been emphasized by 
Serfati (2005) and Grosholz (2007). In the present paper we take the emergence of zero 
as a case study through which to examine some particular aspects of the interplay 
between mathematical notation and conceptual innovations. 

Zero is the number that has received by far the most attention from philosophers 
and other commentators on the history of mathematics. It is the ‘superstar’ among the 
integers, having many popular books written about it with catchy titles such as The 
Nothing that Is. A Natural History of Zero (Kaplan 2000) and Zero: The Biography of a 
Dangerous Idea (Seife 2000). Zero is singled out by both educators and cognitive 
scientists because of its extraordinary properties. These properties make explicit 
computations involving zero more difficult for children to learn. They also make 
accounts of mental representations of it more intricate than those of 1, 2, and 3, its 
neighbors on the natural number line (see Hughes,1986; and Fayol and Seron, 2005). 
Another reason why zero has attracted so much attention is that it is often discussed as an 
integral part of our familiar decimal place-value system, here referred to as the ‘indic’ 
system of numerals.2  In fact, many people are so familiar with the latter that they readily 
mistake the number ten with the numeral ‘10’. Moreover, alleged advantages of place-
value systems over other systems of numerals have often been attributed to the existence 
of zero and its particular role.3 

In this paper we disentangle various notions that have been associated with the 
symbol for zero. This enables us to discuss the uses and the importance of zero in a more 
nuanced way than has been common in the literature. In particular, we will take a closer 
look at the use of zero in a historical precursor of our number system, the sexagesimal 
place-value system of the Babylonians. Insight into the mathematics of ancient 
Mesopotamia was greatly advanced by Neugebauer’s monumental work (see Neugebauer 
1973 [1935–37]). And more recently,much more material and many in-depth scholarly 
discussions have been published on the subject (see Robson 1999 and 2008; Høyrup 
                                                
2 Traditionally, this has been called the Hindu-Arabic system, but it has neither 
anything to do with the Hindu religion nor did it originate with the Arabs. The present 
name was suggested to us by Brendan Gillon to reflect its origins. 
3 Halsted refers to zero as “an indispensable corner-stone of civilization” (1912, 
20), while Dantzig calls the invention of zero “the turning-point in the development 
without which the progress of modern science, industry, or commerce is inconceivable” 
(1954, 35). 
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2002a; and Friberg, 2007).  Based on these resources we show that historically there was 
no clear cut distinction between possessing a zero and not possessing no zero; rather there 
were various intermediate stages. Furthermore, we discuss the misconception that in the 
absence of a symbol for zero computations in a place-value system are cumbersome and 
excessively error-prone.  According to Høyrup (2002a) and Proust (2000), various 
computation errors that can be found in ancient computations suggest that computations 
were not done relying on our customary paper and pencil algorithms, but with some other 
kind of device. It should be noted that such errors involve zeros much less frequently than 
one might imagine, which suggests that such devices did not depend on the presence of a 
symbol for zero in the underlying numeral system. 
 

2.  The many sides of zero 

In discussions about the importance of zero and its role in mathematics it is important to 
distinguish different, and independent, aspects of this notion. Failure to do so almost 
inevitably results in ambiguities and misattributions. For this reason, we aim in the 
present section to disentangle and briefly discuss several aspects of zero . Our main focus 
will be on the role of a symbol for zero in a place-value numeral system. 

When talking about the history of zero, one must first distinguish the word ‘zero’ 
and the now common shape of zero, namely ‘0’ (Menninger 1969). In addition, zero can 
also be understood as denoting the concept of absence, void, nothingness, or the 
cardinality of the empty set, e. g., to signify the result of taking away five apples from five 
apples. If zero is used in arbitrary computations, like 5+0=5 and 4×(3–3)=0, then it is 
intended to denote a full-fledged number. 

It is worth pointing out that all of the above aspects of zero are independent of the 
particular numeral system that is being used. In other words, there is no logical reason 
why ancient Romans could not have introduced a symbol denoting the number zero and 
used it in their calculations.  

A further aspect of zero, as we commonly understand it, is intimately connected 
with its role in a place-value system of numerals, like the decimal system most of us are 
familiar with. Because of this, the purported advantages of having a zero-numeral and of 
using a place-value system have been frequently presented as two sides of the same coin. 
A closer look, however, reveals that matters are not so straightforward and that even 
within a place-value system, different  and independent aspects of zero can be 
individuated. We shall look in detail at the use of symbols for zero by the ancient 
Babylonians to illustrate these aspects and to show how they are independent In the 
discussion that follows,we distinguish five roles that a zero symbol can play in a place 
value-system. 
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2.1 Placeholder zeros 

Although we assume that most readers are familiar with the decimal place-value system, 
we give a few notes about it which be useful for a proper understanding of the various 
aspects of zero discussed below. In general, a place-value system is structured around a 
specific base number b. To record the units from 1 to b–1, b–1 different basic symbols 
are needed, which are commonly written in the right-most place. In our system, which 
has a base of ten, these are the digits ‘1’, ‘2’, …, ‘9’. The place-value that a basic symbol 
in a numeral represents depends on the place in which it occurs: the value of  the symbol 
written in the second position is to be multiplied by b, those in the third position by b2, 
etc., and the value of the whole numeral is obtained by adding the various place-values of 
the symbols it is composed of. In the example given in Figure 1 we determine the value 
of ‘5536’ in a base-10 system to be (5×103)+(5×102)+(3×10)+6 = 5536. 

Position:  …  4. 3. 2. 1. 
Basic symbols:  … 5 5 3 6 
Place-value:  … 5000   500 30 6 
  … 5×b3   5×b2 3×b     units 

Figure 1:  The place-value system (from right to left) with base b=10. 

Intermediate zeros. 
A slight complication arises in place-value systems, because not all numbers need factors 
in each of the places to be expressed. But as long as it is made clear that a place is empty 
no additional symbol needs to be introduced. For example, if numerals are always written 
on graph paper or within boxes, like 

5   3 6 
they can be read easily and unambiguously (in the example, as 5036). Similarly, if a 
counting board or abacus is used to represent numbers, an empty place is simply an 
empty column on the board. If the numerals are written linearly, an empty place can be 
marked by a blank space of some fixed width. Alternatively, an additional symbol, say   
‘–’, could be introduced to mark the empty places, so that the number in the example 
would be written as ‘5–36’. In the indic numeral system the symbol used to accomplish 
this task is the zero. Following Høyrup (2002a), we shall refer to a symbol that is used to 
mark empty places within a numeral as an intermediate zero. 

Initial and Final zeros. 
A very special case of an intermediate zero occurs if the empty places in a numeral are 
the right-most ones, as in ‘5000’. We call such occurrences of the symbol for the empty 
places final zeros (Høyrup 2002a).  Similarly, empty places can also occur at the 
beginning of a numeral, such as in ‘0.005’, and symbols marking empty places at the 
beginning will be referred to as initial zeros (Friberg 2007). In both of these cases the 
zeros determine the magnitude of the number and they can be omitted if the magnitude is 
indicated in some other way, e. g., by writing ‘5K’, ‘5‰’, or by saying ‘five thousand.’ In 
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the case of rational numbers, initial zeros can be avoided altogether by writing the 
number as a fraction. 

Nothing zeros. 
An exceptional case of a numerical symbol is the one that signifies the absence of a unit. 
In the indic system of numerals this role is played again by zero. We shall refer to this 
particular kind of symbol as a nothing zero. As in the cases above, such a symbol can be 
employed even if it is not considered to stand for a number, but only as a placeholder. 

As we shall see later, these aspects of zero are independent of each other and they 
do not need to be marked by the same symbol at all. The fact that we use the same 
symbol for all of these tasks obfuscates these distinctions; although, since initial, final, 
and nothing zeros can be construed as being special cases of intermediate zeros, there are 
also good reasons for using the same symbol.  

 

2.2 Babylonian sexagesimal system: Separation zeros 

The need for another kind of symbol arises specifically in the Babylonian sexagesimal 
system – a  place-value system with base 60 that was developed over 4000 years ago in 
Mesopotamia. We shall discuss some aspects of the historical development relating to the 
use of a zero symbol in more detail below. 

To represent sexagesimal numerals in this paper we use the standard convention 
of writing the numerals within a place as decimal place-value numerals and of separating 
the places by commas. For easier readability we also enclose such transcriptions in single 
quotation marks. Thus, the value of the numeral transcribed as ‘2,3’ is (2×60)+3=123. In 
the literature, empty places (intermediate and final zeros) are usually transcribed as ‘00’, 
regardless of how they are represented in the original tablet. A sexagesimal point is 
indicated by a semi-colon. Thus, a transcription of ‘1,00;30’ denotes the number 60.5. 

Since the Babylonian place-value system has a base of 60, 59 different basic 
symbols are needed for the units. However, instead of introducing 59 different new 
symbols for the units, the Babylonians used an additive numeral system with base 10 for 
these numerals, with small horizontal wedges for the units (‘|’), and large vertical wedges 
for the tens (‘〈’). Because in an additive system every symbol represents a fixed 
numerical value, no intermediate or final zeros are required at all in such a system. 
Through the combination of the sexagesimal system with an additive system for the units, 
a peculiar difficulty arises within the Babylonian place-value system. Consider, for 
example, the numeral ‘〈〈 ||,’ which unambiguously stands for 22, and which consists of 
the additive components ‘〈〈’ (20) and ‘||’ (2). If these symbols are used in a place-value 
system, one needs to be able determine in which places its components belong. They 
could fill one place and thus stand for 22, but they could also be intended to be split 
across two places, with ‘〈〈’ in one place and ‘||’ in the other. In this case, the sexagesimal 
numeral is to be read as ‘20,2’ representing 1202. (Indeed, without a symbol for 
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intermediate zeros it is possible that the numeral could contain any number of empty 
places and thus be read as ‘20,00,2’ or ‘20,00,00,2’ and so on.) Since the Babylonians 
usually grouped the tens and units together and wrote them in certain easy identifiable 
patterns, it is practically impossible to interpret the ‘〈〈 ||’ as being split up in other ways 
(e. g., between the two vertical or the two horizontal wedges, resulting in ‘1,12’ or 
‘21,1’). To disambiguate between the possible interpretations of such a numeral one 
could introduce a special symbol to mark the end of a numeral representing 10, 20, 30, 
40, and 50. We refer to such a symbol as a separation zero. In the decimal place-value 
system there is no need for such a symbol, because only a single digit is used in each 
place-value position. 

3.  Zero in Babylonian computations 
To illustrate the uses of the various symbols for zero in Babylonian mathematics we  
focus on the two historical periods from which many clay tablets have been preserved: 
Old Babylonia (roughly 2000 to 1600 BCE) and the Seleucid Era (300 BCE to 0). 
Surviving mathematical problem texts from Old Babylonia mainly deal with problems in 
line geometry, geometrical algebra and quantity surveying (Robson 1999, 102; also 
Neugebauer 1969, 44), whereas mathematical problems pertaining to astronomy were 
more common in the Seleucid period (Neugebauer 1969, 14). 

3.1 Differences between Old and Late Babylonians 
 
The Babylonians used different number systems for different purposes (Thureau-Dangin 
1939) and claims about zero apply only to the sexagesimal place-value system. 
According to Thureau-Dangin, the Babylonians used this system as an academic system, 
while “the system of numeration commonly employed in Babylonia was not sexagesimal 
but a decimal one” (1939, 117). The sexagesimal system was used only for calculations 
and different bases were employed for metrological units (1939, 122, in particular 
footnote 74). According to Friberg, “it is well known that in the Akkadian language 
number words were decimal. In everyday life in Mesopotamia, decimal numbers were 
used for counting. Only well educated scribes knew how to count with sexagesimal 
numbers” (Friberg 2007, 182). Moreover, at least one metrological system used different 
symbols for 1 and 60: in the talent system, horizontal wedges were used for 1, and 
vertical wedges for sixty (Friberg 2007, 388). This familiarity with decimal systems 
might explain the curious use of the base-10 additive system to represent the basic 
symbols in the Babylonian sexagesimal system. 
  

To appreciate the relevance of the different kinds of symbols for the aspects of 
zero introduced above, consider the Babylonian sexagesimal system without any symbols 
for intermediate, final, and separation zeros: How could the numeral ‘〈 |’ be interpreted in 
this system?  The most straightforward reading would yield ‘11’, but also the following 
are possible (among others): ‘10,1’ (=601), ‘11,0’ (=660), and ‘10,00,1’ (=36001). Given 
the relatively large differences in magnitude of these numbers, however, it is not too 
difficult to imagine that a skilled reckoner would know from the context of his 
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calculations (e. g., a multiplication in a multiplication table, or the solution to a particular 
problem) how the numeral was to be interpreted correctly.  

If we restrict ourselves only to an initial segment of the natural numbers, 
intermediate and final zeros occur in the Babylonian system much less frequently than in 
our decimal system. Since we are dealing here with natural numbers, we omit the 
consideration of initial zeros. Of the Babylonian numerals that represent the numbers 
from 1 to 215 999 (greatest value of a sexagesimal numeral with 3 positions) only around 
3% contain an intermediate or final zero, while these zeros occur in about 43% of the 
corresponding numerals in the indic decimal system. Two consecutive empty places are 
extremely rare in practice and we are not aware of any single numeral occurring in a 
Babylonian tablet that contains two consecutive empty places. 
 
Old Babylonia 
During the Old Babylonian period no particular symbol was used as a nothing zero. As an 
example, consider the tablet TMS 7 (Høyrup 2002a, 181–188). Here 20 is subtracted 
from 20 and in contrast to the other calculations within the tablet the answer to this 
problem is omitted. Thus, while the numeric answers to all the other problems within the 
tablet are stated explicitly, it looks like that the answer to this problem is simply ignored. 
In similar cases of such subtractions the text claims that the outcome is “missing” 
(Høyrup 2002a, 184 and 293). 

The Old Babylonians also did not use initial or final zeros, and they did not have a 
sexagesimal point. Thus, for them the values 1, 60,  3600, etc., as well as 1/60, 1/3600, 
etc., are all represented by the same symbol: ‘|’.4 In the decimal place-value system this 
would be analogous to having all values of 10n, for any integer n, represented by the same 
symbol. This can complicate the interpretation of mathematical writings considerably. 
For example, in the Later Mesopotamia tablet Ash 1924.796 (Robson 2007, 156–159), 
the scribe writes out the list of squares from one to sixty, but in Robson’s translation the 
list begins and ends by claiming that the square of 1 is 1, even though the context 
suggests that the second instance of this claim might be better interpreted as claiming that 
the square of 60 is 3600. 
 

As a consequence of the lack of zero symbols, number magnitude had to be 
identified on the basis of context. This includes determining whether the number in 
question is a decimal or a whole number, and, if it is a mixed number, identifying where 
the decimal begins. Yet this does not appear to have been overly problematic for the 
Babylonians. Possibly this is because in a sexagesimal system the difference between 
each place value column is quite large. After all, we sometimes identify numbers based 
on context even today: if a colleague said that her house cost “four-fifty”, it would 
(probably) be clear that she meant four hundred and fifty-thousand dollars, but if she said 
that the sandwich she ordered for lunch cost “four-fifty”, we would likely understand her 

                                                
4 It is worth noting that although the numerals were the same, at least some the 
number words were not. Summerian and Akkadian both had different words for “one”, 
“sixty” and “thirty-six hundred” (see Melville 2003).  
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to mean four dollars and fifty cents.  
 

While the Old Babylonians did not have a symbol for intermediate zeros, they did 
have means for indicating them. An intermediate zero, i.e., an empty place-value column 
in the middle of a number, would be marked with a space (Neugebauer 1969, 20). Thus, 
for example, ‘45,00,2’ would be written as ‘〈〈〈〈|||||    ||’. 

 
The Old Babylonians also used a separation zero, and this too was marked by a 

space. Theoretically this could lead to confusion about how to interpret spaces in 
numerals. However, it seems that in practice it generally did not. One way such confusion 
was avoided was by using smaller spaces to mark a separation between two place value 
columns and larger spaces to mark empty place value columns. An example of such uses 
of spaces can be seen in the famous tablet Plimpton 322 (Robson 2002). It is interesting 
that although this convention appears to have worked well for the Babylonians, it posed 
difficulties to modern translators. Indeed, interpretations of Plimpton 322 remain 
controversial. The difficulty of reading Old Babylonian numerals is exacerbated by the 
fact that not all tablets have multiple spaces of different sizes. Without a frame of 
reference it is difficult to determine what qualifies as a ‘big’ or ‘small’ space. To make 
matters worse, sometimes tablets have seemingly irrelevant spaces (Neugebauer 1969, 
20). 
 
 
Seleucid Era 
During the Seleucid Era, more than a thousand years later, there still was no symbol in 
use for a nothing zero. And as in Old Babylonia, neither initial nor final zeros were used.5 
However, intermediate zeros were marked regularly by a symbol rather than just by a 
space (Høyrup 2002a, 294; Robson 1999). Moreover, in a select number of scribal 
schools during this era, the symbol for intermediate zero was also used to separate units 
of different columns, e.g., between ‘〈|’ and ‘||’ in the numeral ‘11,2’ (Neugebauer 1941, 
213–215). On this use it was placed between two numbers to indicate that they were in 
different place-value columns, without indicating an empty place-value column between 
them, i.e., as a separation zero. In this case, however, ‘30,4’ would again be written using 
the same symbols as for ‘34’. Some scribes used a symbol for separation zeros during the 
Seleucid Era, but this was not adopted widely.6  
 
 In sum, the main change between Old Babylonia and the Seleucid Era was that 
intermediate and separation zeros came to be represented by a symbol (see Figure 2). 
This  shows that the notions of initial and final zero are independent from those of 

                                                
5 However, this claim is contested by Neugebauer (1969, 20), who holds that there 
are instances of the zero symbol being used as an initial zero. 
6 An investigation of why this use was not adopted is beyond the scope of this 
paper. Otto Neugebauer, the translator who first noticed this use, writes: “From the purely 
mathematical point of view, this use of the ‘zero’ sign is doubtless a step backward in the 
development of a rational number notation, and it is therefore easy to understand that it 
was not generally accepted in astronomical texts” (Neugebauer 1941, 213-215). 
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intermediate and separation zero. 
 
  

Kind of Zero Old Babylonia Seleucid Era 
Nothing Zero Not used Not used 

Initial and Final Zeros Not used Not used 
Intermediate Zero Represented by a space Represented by a symbol 

Separation Zero Represented by a space Represented by a symbol 
(sometimes) 

Figure 2. Comparison of use of zero between Old Babylonia and Seleucid periods. 

 

 

3.2  Computations 
 
Extant computations 
In the following discussion we distinguish between calculations and computations. A 
calculation is a series of operations that yields the solution of a particular problem. For 
example, finding a particular amount of wheat might involve first dividing the given area 
of land by the number of people, then multiplying the yield of a unit of land by the 
previously obtained result. We refer to each single step of such a calculation as a 
computation. Thus, a computation is usually the application of one of the basic arithmetic 
operations or some more advanced operation, like raising to some power or taking the 
square root. 

If somebody found a contemporary elementary school mathematical notebook 
they would likely be able to reconstruct the algorithms used for the basic arithmetic 
operations. Additions would often contain auxiliary marks to record the carries from one 
column to the next and multiplications would show the carefully arranged intermediate 
results that have to be added up in order to obtain the final result of the calculation. In 
general, after a paper and pencil computation we do not end up with just the problem and 
the final result on the paper, but also with various additional marks and intermediate 
results, which were used during the calculation. However, such concrete evidence for 
paper and pencil computations found on Mesopotamian clay tablets is minimal.  

Scholars have found that some of the Old Babylonian tables were frequently reused, 
suggesting that they contained only rough work for calculations. The description by 
Powell, who discovered such ‘scratch pads’ dating back to the third millennium BCE is 
slightly ambiguous as to the content of this work: “Calculations in sexagesimal notation 
were made on temporary tablets which were then moistened and erased for reuse after the 
calculation had been transferred to an archival document in standard notation” (Powell 
1976). In fact, these “rough work” tablets (Robson 2009) do not contain explicit, written 
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out computations, but only intermediate results of calculations. It thus seems safe to 
assume that the Babylonians did not use any of the algorithms we use today, but that they 
made use of some kind of computational device. From an analysis of computational 
errors, Høyrup (2002b) was able to infer some properties of the devices used during the 
Old Babylonian period.  

Another indication for the use of an external computation device is that apparently 
no tablets with basic addition facts, like 3+4=7 and 9+8=17 have been preserved, whereas 
numerous tablets exist for multiplication tables. A possible explanation is that no such 
addition facts needed to be explicitly memorized, since they were computed on some 
abacus-like device.  

 

Types of errors 
For the discussion of computational errors it is useful to distinguish between several 
kinds of errors.  

First, there is a distinction with respect to the effect a computational error has on a 
larger calculation in which it features. On the one hand, there are propagating errors,7 
which, once they occur, propagate through the remainder of the calculation yielding a 
false result. This kind of error indicates that the calculation carried on with the results of 
the erroneous computation. On the other hand, there are isolated errors, which occur 
within a calculation, but do not affect the end result. These errors give us some hints 
about how the calculation was made. Three possible explanations come to mind for such 
isolated errors:  

a) The calculation was made on some kind of calculating device and only the 
intermediate results are recorded on the clay tablet. Thus, if a correct intermediate result 
is on the computational device, but it is copied incorrectly to the tablet, then the 
erroneous number has no effect on the overall calculation. This is a kind of copying 
error, which is mentioned only rarely in the secondary literature, but from which we can 
get some indirect hints about the devices used for the computations (see Høyrup 2002b).  

b) Under the label ‘copying error’ commentators usually understand a mistake that is 
made when an entire tablet that contains a finished calculation is copied. Here, too, the 
calculation continues with what would have been the correct value despite the error, since 
the correct calculation is what is being copied.  

c) A third explanation for isolated errors is that the calculation was in fact carried out in 
two directions: from the problem to the solution, and from the desired solution to the 
initial problem. The latter part of such a calculation is necessarily correct, since the result 
was actually its starting point, so that a computational error in the middle of the 
calculation would propagate only to the point where the top-down and bottom-up 

                                                
7  Most of the terminology of errors is taken from Friberg (2007). 
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calculations meet. 

Our first distinction, between propagating and isolated errors, is based on the 
effect of the errors on the overall calculation. Errors can further be characterized by their 
origins. Where mistakes originate will differ for each particular notational system,  since 
particular features of each system might encourage particular errors. For example, if the 
symbols used are very similar, it will be more likely for them to be mistaken for one 
another. Or if the columns of an abacus are too close to each other it might be easier for 
the pebbles to get moved inadvertently from one column to the next. Such mistakes can 
be broadly classified as notational errors.  

Finally, we can also classify mistakes within a single computation according to 
their origins. For this purpose Friberg (2007) has introduced the notion of telescopic 
errors and reverse telescopic errors. Here, columns are erroneously added or removed in 
the course of a computation. The latter are particularly related to the possession or lack 
thereof of a symbol for zero, as we shall see next. 

Babylonian error  
Friberg (2007, 32–33) transcribed the tablet VAT 5457, which contains an error in the 
calculation of the product of ‘52,44,03,45’ and ‘7,30’. Friberg conjectures that the error 
arises during the final step of this calculation, when four intermediate results are added 
incorrectly. During this addition, Friberg suggests that ‘22,30’ and ‘5,37,30’ are 
mistakenly moved one column to the left, while ‘6,30’ and ‘5,30’ remain properly 
positioned (see Figure 3 for the correct positioning of the intermediate results). 
 

6 30     
 5 30    
   22 30  
   5 37 30 
6 
 

35 30 28 7 30 

 
Figure 3: Intermediate results of ‘52,44,03,45’ times ‘7,30’. 

 
As a consequence, the “30” from ‘5,30’, the “22” from ‘22,30’ and the “5” from 
‘5,37,30’ are all found in the same column. The correct calculation would place the “22” 
and the “5” one column to the right. Thus, in the erroneous calculation the intermediate 
results are positioned incorrectly, causing the sum be telescoped inward to remove a 
place value column.  
 

These so-called reverse telescoping errors are frequently attributed to the lack of 
initial and final zeros, since such zeros unambiguously show the number of place-value 
columns for each number (see, for example, Friberg 2007) and this information can be 
used to line up the columns correctly. Nevertheless, Høyrup (2002b) and Proust (2000) 
have argued that the Babylonians actually used a device similar to an abacus for their 
calculations. This would explain why they did not make that many mistakes involving 



 12 1
2 
1
2 

zero. Indeed, the errors that are discussed by Friberg (2007) could arguably also be made 
on these kinds of devices and are thus not necessarily related to the presence or absence 
of symbols for intermediate zeros in a numeral system. 
 
 
4. Concluding remarks 
 
Even in the two main historical periods discussed, the use of the sexagesimal place-value 
system was far from consistent. For example, different tablets respond to calculations 
with nothing zero in different ways, giving different results to such problems. Or, during 
the Seleucid Era, not every tablet uses a symbol to represent separation zeros—some 
keep using spaces. The tablets that use a symbol for separation zero often use the same 
symbol as for intermediate zero. However, different tablets use different symbols for this 
purpose. Thus, not every tablet with a symbol for separation zero uses the same symbol 
for this purpose: some tablets would use two wedges, and others would use three wedges 
(Robson 1999, 156–159, 166–168, and 175–176.). In addition, these symbols also had 
other uses. For example, before two wedges were used for intermediate zero and 
separation zeros, they were used to mark the ends of sentences (Neugebauer 1941). In 
addition to this symbol’s use as an intermediate zero, it was also used “as a word divider 
between numbers where [the scribe had] to break up the tabulation because the numbers 
are so long” (Robson 1999, 166).  
 

We hope to have convinced the reader that, on the one hand, different uses of zero 
are independent from each other and, on the other hand, that using a place-value system 
is independent of having a symbol for zero. The independence of the different roles of 
zero also makes it difficult to pinpoint an exact time when zero was ‘invented.’ In fact, 
there isn’t necessarily a clear distinction between having a zero and not having a zero. A 
number system can have a symbol for one role of zero, but not others—or a number 
system can employ all the roles of zero, but have them represented by different symbols. 
Furthermore, a careful look at the historical development of numeral systems reveals that 
number systems lacking a full-fledged zero need not be excessively error prone even if 
they employ a place-value system.  
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