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Abstract

On the basis of a wide range of historical examples various features of axioms are discussed in
relation to their use in mathematical practice. A very general framework for this discussion is
provided, and it is argued that axioms can play many roles in mathematics and that viewing them
as self-evident truths does not do justice to the ways in which mathematicians employ axioms.
Possible origins of axioms and criteria for choosing axioms are also examined. The distinctions
introduced aim at clarifying discussions in philosophy of mathematics and contributing towards a
more refined view of mathematical practice.

1 Preliminaries

1.1 Motivation

Euclid’s presentation of geometry in the Elements has been hailed as the paradigm of mathematics

and it has served as a model for many theories, including scientific ones (e. g., Newton’s). Euclid’s

presentation is axiomatic in that it puts a number of statements (the axioms, although he did not

call them that) at the beginning and develops the rest of the theory from them via deductions and

definitions. Thus, from antiquity onwards axioms have been regarded as an important ingredient in

mathematics and many have commented on their special character, often in terms of some kind of

privileged epistemological status. The axiomatic method was emphasized again at the dawn of the 20th

century, most famously by Hilbert but also by many others, as being characteristic of mathematics.

More recently, a renewed interest in the role of axioms in mathematics was sparked by Feferman’s

question ‘Does mathematics need new axioms?’ [1999]. In recent years philosophers of mathematics

have also turned their attention towards mathematical practice (e. g., [Grosholz 2007] and [Mancosu

2008a]) and in this paper these two trends are brought together. To this end, a general framework for

talking about the roles and functions of axioms is put forward and various considerations on the use of

axioms in mathematical practice are discussed. Thus, instead of proposing just another particular point

of view on the role of axioms, the present paper suggests a pluralistic approach.
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1.2 The orthodox view and refinements

A general difficulty with discussing axioms in mathematical practice is that most readers will already

have some conception of what axioms are and what they do. In particular, despite the fact that

philosophers of mathematics have begun to include mathematical practice into their considerations,

the role of axioms is still most often seen only in the so-called context of justification1, where

they serve as the foundation for a rigorous presentation of a theory. This view underlies the ideal

conception of scientific theories that goes back to Aristotle.2 According to this orthodox picture,

axiomatizing consists merely in ‘introducing order into an already developed field’ [Copi 1958, 115].

The axiomatization of a discipline is the final step that concludes the development of a theory. Thus,

axioms play no role in the creation of the ‘substance’ that must be present ‘before you can generalize,

formalize and axiomatize’ [Weyl 1935]3, or, as Hanson put it: ‘by the time a law gets fixed into a[n

axiomatic] H-D system, the original scientific thinking is over’ [Hanson 1958a, 1081]. In parallel to

this methodological stance with regard to axioms one often finds a specific epistemological stance,

where an axiom is considered to be an immediate truth, or as Feferman quotes the Oxford English

Dictionary: ‘A self-evident proposition requiring no formal demonstration to prove its truth, but

received and assented to as soon as mentioned’ [Feferman 1999, 100].

While various commentators have identified different roles of axioms (more on this below), other

authors have insisted that there is one single role of axioms, or at least clearly one main role. For

example, Easwaran claims that ‘the real role of axioms’ is ‘to allow mathematicians to stay away

from philosophical debates’ [Easwaran 2008, 385 and 381; italics by DS], while Hintikka contends

that ‘[t]he basic idea of the [modern axiomatic] method is the capture of a class of structures of the

models of an axiomatic system’ [Hintikka 2011, 69; italics by DS]. Against such one-dimensional

characterizations, it will be argued below that the use of axioms is quite varied and rich.

1.3 Main claims and overview

The analysis of axiomatics presented here combines systematic and historical considerations, with

an emphasis on the systematic side, and it is not tied to any particular case study or the views of any

particular mathematician or philosopher. In the presentation and discussion of the more specific issues,

namely the origins of axioms, criteria for their assessment, and advantages of axiomatic presentations

(in Sections 3, 4, and 5, respectively), I will nonetheless frequently draw upon historical episodes

in the development of mathematics as well as remarks made by mathematicians and philosophers.

Particular conceptions of axiomatics can then be identified by taking some of the discussed aspects as

the essential, defining characteristics of systems of axioms, or by adding further, more idiosyncratic

considerations. However, any such choice comes at the cost of neglecting other aspects of axiomatics

that have played a role in mathematical practice. Thus, one point that I argue for in this paper is:
1[Reichenbach 1938]; see [Schickore and Steinle 2006] for more recent discussions of the distinction between the

contexts of justification and discovery.
2This conception has recently been articulated and discussed as the ‘classical conception of science’ by Pulte [2005, 30]

and the ‘classical model of science’ by de Jong and Betti [2010, 186].
3Quoted from [Wilder 1959, 475].
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(a) Axiomatics is an epistemic and methodological tool that can be employed in various ways. In

other words, there is no single role that axioms play in mathematical practice; rather, the same

set of axioms can be employed in different roles.

It is not the axioms themselves that determine their role, but their use (this point will be illustrated

using a toy example in Section 2.1). Because of this, I contend that accounts of axiomatics that claim

that there is one single role that axioms play in mathematics are misguided. Of course, an analysis

might focus on a certain aspect or on a particular use, but this does not entail that other aspects or uses

are of lesser importance for mathematical practice in general.

The historical uses of axioms that will be referred to in the discussion support two further claims,

which are also opposed to the orthodox view of axioms sketched above.

(b) Popular criteria for axioms, e. g., that they should be as few, simple, and self-evident as possible,

are highly idealized desiderata and by no means necessary conditions for systems of axioms.

The point here is not to deny that mathematicians often use certain epistemic and methodological

criteria to guide their choices of axioms, but that these criteria may well stand in conflict with each

other and can be given up in light of other considerations.

The history of mathematics does not back up the view that axiomatization is all but the final step

in the development of a theory; for example, geometry did not end with Euclid and neither did the

study of lattices end with the formulation of the axioms of lattice theory. These observations lead to

my third main claim:

(c) The practical usefulness of axioms goes well beyond the context of justification and the aim

of clarifying and providing foundations for mathematical theories; they are also engines for

discovery in mathematics.

In this paper, I consider an axiom system to consist of a number of statements (the axioms) and

a notion of consequence, which is employed to derive further statements from them; the resulting

axiomatic theory includes all statements that are derivable from the axioms and which might also

contain terms that are defined from the primitive terms that occur in the axioms (i. e., the primitives

of the system). It is also useful on some occasions to distinguish further between the finite known

theory of actually derived consequences and the infinite logical theory consisting of all derivable

consequences.4 In order to provide a framework for discussing the various uses of axioms, I identify

(in Section 2) three dimensions (namely: presentation, role, and function) according to which axiom

systems can be classified. To put my final claim concisely:

(d) The dimensions of presentation, role, and function allow us to characterize different uses of

axioms and to compare them along these three axes, with the purpose of clarifying discussions

of axiomatics in mathematical practice.

After briefly addressing some potential formal, philosophical, and historical concerns about my

project, I will introduce and discuss the main dimensions of axioms in Section 2 with the help of

an imaginary example. In mathematics the origins of any particular system of axioms lie in some

4Tennant calls a finite set of statements that includes the axioms and that is included by the logical theory a development
[Tennant 2012, 85–86].
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previously given body of mathematical knowledge, as will be argued for in Section 3, ‘Where axioms

come from’. Frequently used criteria for assessing a proposed axiomatization are presented in ‘What

are good axiom systems?’ (Section 4), and my discussion is closed by emphasizing the unique

possibilities that axiomatics affords in Section 5, ‘What you can do with axioms that you couldn’t do

without’.

1.4 Formal, philosophical, and historical concerns

Before proceeding to the main part of this paper, I would like to address some concerns that have been

raised by readers of previous drafts of this paper regarding the use of formal logic, the distinction

between philosophical and mathematical considerations, and the historical range of application of my

analysis.5

Formal concerns. With the development of formal logic and the intensive study of properties of

formal theories in the 20th century, immense theoretical insights have been obtained. In addition, it

has become custom in philosophy to discuss mathematics in general from this modern perspective.6

Without calling into question the usefulness of this approach with regard to some aspects of mathe-

matics, there are however, other aspects that do not require a formal treatment or that even cannot be

fully captured by such a treatment. The use of axioms in mathematical practice, I contend, is such

an aspect. This view is supported by none other than Bourbaki, who writes that the essential aim of

the axiomatic method ‘is exactly that which logical formalism by itself can not supply, namely the

profound intelligibility of mathematics’, and that formalization is ‘but one aspect of this [axiomatic]

method, indeed the least interesting one’ [Bourbaki 1950, 223]. Of course, I will avail myself of mod-

ern terminology, notation, concepts, and results, when appropriate. However, I do not want to use these

as the starting point of the investigation — as the golden standard, so to speak, against which actual

historical developments of mathematics are to be measured. The reasons for this are three-fold. First,

most historical examples of axiomatics, even such paradigmatic ones as Euclid’s Elements or Hilbert’s

Grundlagen der Geometrie [1899], would simply not meet this standard. Second, meta-logical notions

that have a rigorous meaning in a formal setting, like proof, completeness, and categoricity, have all

been employed outside of such a setting long before their formal counterparts were introduced. For

example, Dedekind gave a proof of categoricity in [Dedekind 1888] and completeness is discussed

in [Hilbert 1899].7 Third, in contemporary discussions axiomatization is frequently conflated with

formalization (e. g., in [Lakatos 1976, 142–143] and [Suppe 1977, 113]) and thus the differences

between axiomatization and formalization are not brought out in full. In this paper I resist looking at

mathematics exclusively through the lenses of formal logic and present axiomatics (both formal and

informal) as a powerful methodological technique in its own right. Thus, I shall begin in Section 2

5I am particularly indebted to two referees of this journal for many insightful comments that prompted these reflections.
6Presentations of axiomatic theories in terms of formal logic can be found in any logic textbook, e. g., [Enderton 2001]

and [Boolos et al. 2007]; for particular emphasis on axiomatics, see [Blanché 1962].
7For a more detailed discussion in connection with criteria for the choice of axioms, see Section 4.3.
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by discussing the presentation of axiomatic theories, their roles and functions in general terms, with

formal presentations as special cases.

Philosophical concerns. As mentioned in my brief presentation of the orthodox view of axioms,

they are frequently described as some kind of immediate truths. As has been noted, however, for

example by Maddy [1988, 483], mathematicians have willingly laid aside such strong philosophical

commitments in light of more pressing mathematical considerations. In fact, some have openly

renounced the importance of what they considered to be ‘non-mathematical’ considerations for

mathematics, referring to them as ‘metaphysical’ (Leibniz, Veblen) or simply ‘philosophical’ (Klein).

(Since this issue has to do mainly with criteria for selecting axioms, it will be discussed in more

detail in Section 4.1.) Nevertheless, this alleged contrast between mathematical and philosophical

issues neither implies that mathematicians do not pursue (broadly construed) epistemological goals

themselves, nor that there are no genuine philosophical questions to be asked about mathematics (e. g.,

regarding the nature of the entities that are being described by axioms). Rather, the main target of

the somewhat polemical remarks mentioned above are positions that are based on a special kind of

insight into mathematical truth or the nature of mathematical objects, which were seen as hindering

mathematical progress, or at least as not contributing to it in an obvious manner. For a contemporary

mathematician it is difficult to imagine the force of the opposition that was once raised against the

introduction of negative and complex (or imaginary) numbers.

There is also a lesson to be learned from these observations for contemporary philosophy of

mathematics: An overly narrow understanding of epistemology that is focused on truth and certainty

cannot do justice to mathematical practice. In other words, a philosophy of mathematics that takes

mathematical practice seriously should be based upon a broader notion of epistemology, which includes

methodological considerations (e. g., issues of clarity and intelligibility), as well as social factors and

those currently studied by cognitive science. The present paper is intended as a contribution towards

such a more refined view of mathematical practice and as a basis for further philosophical discussions.

Historical concerns. Examples of axiomatic work can be found throughout the history of mathe-

matics, the most famous being Euclid’s Elements of Geometry. This form of presentation, also known

as ‘more geometrico’, soon came to be regarded as prototypical for all scientific theories. Works as dif-

ferent as Newton’s Principia and Spinoza’s Ethics were modeled after it. It was only in the nineteenth

century, however, when axiomatic presentations were also employed in other areas of mathematics

(e. g., in algebra and number theory). Slowly, the separation of syntax and semantics emerged, for

example, in the duality of projective geometry, and the modes of inference themselves also became a

focus of attention for some mathematicians. The development that was prepared by Dedekind, Frege,

Pasch, and Peano found a high point in Hilbert’s work on geometry and later on meta-mathematics.

By the turn of the twentieth century, axiomatic presentations had become increasingly popular in many

areas of mathematics and also in the more theoretically advanced of the natural sciences. Hilbert’s

‘Axiomatic thought’ [1918] provides an informative historical account of these developments, and
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Blanché’s Axiomatics [1962] gives a presentation that also includes later developments, in particular of

formal logic, model theory, and Gödel’s limitative results. Nonetheless, it must be kept in mind that the

development towards the modern view of axioms was neither as straightforward nor as smooth as the

previous sketch might suggest. Individual mathematicians have held much more nuanced views, e. g.,

by identifying some areas of mathematics for which an axiomatic treatment is warranted, but rejecting

it for others (Frege, Russell), or by entertaining different conceptions of axiomatics, depending on the

purpose of the axiomatization (Pasch).

To be clear, my aim is not primarily to investigate how the term ‘axiom’ has been employed in

mathematics, nor to explicate a common understanding of the term (indeed, there might not even be a

significant common understanding that underlies all uses of axioms), but to discuss how and for what

purposes mathematicians have employed axioms. For this it does not matter whether the historical

actors were themselves aware of the dimensions I introduce, nor whether they used the term ‘axiom’

to refer to axioms in the sense of the present paper. Of course, each individual can also use other

criteria to discuss and evaluate his or her own axioms. An example of such a more sophisticated view

is Euclid’s distinction between ‘postulates’ and ‘common notions,’ both of which I consider to be

axioms, although Euclid himself did not refer to them as such. These criteria, however, can always be

understood as refinements of the general framework.8

Given that the following discussion employs many notions that emerged explicitly only in the

nineteenth century and were fully developed only in the twentieth century (e. g., the distinction between

semantic and syntactic roles of axioms, Section 2.3), this might create the mistaken impression that

my analysis of axioms covers only the mathematical practice of the past two centuries. Because of

the popularity of axiomatics during this period of time, many of my historical examples will belong

to it, but the analysis is intended to apply to all instances of axiomatics, from Euclid to the present.

As mentioned above, it is irrelevant whether mathematicians were aware of the distinctions I refer

to, or whether they used the term ‘axiom’ for their axioms: While individual mathematicians may

not exploit all ways in which axioms can be put to use, the dimensions of presentation, role, and

function introduced in the next section can nonetheless be used as a framework for the study of their

achievements.

2 The main dimensions of axioms

2.1 Some imaginary axioms

Imagine you find an undated manuscript that reads: ‘Axioms: Every gaal is copper to itself. If any gaal

is copper to another gaal, and the second is copper to a third gaal, then the first gaal is also copper

to the third one.’ At first you are surprised by the word ‘gaal’, which you do not know, and by the

unfamiliar use of the word ‘copper’. These are the primitive terms, which are put into logical relations

by the remaining words in the sentences.

8The same can be said for Pasch, Frege, Russell, Hilbert, who each had their own sophisticated conceptions of axiomatics,
which deserve their own full-length treatments.
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Given that you do not know anything about the origin of this manuscript, you surmise some

possibilities about the meanings of ‘gaal’ and ‘copper’: The author had particular meanings of these

words in mind, which are different from those in modern English; the author is giving definitions of

gaals and the binary relation of copper; the author uses some made-up words, which in this connection

had no more meaning for her than they have for you. With regard to the main purpose of the axioms

(that they are axioms you know from the first word in the manuscript) you are also left in the dark:

They might describe some properties of gaals and copper, or introduce the usage of the terms ‘gaal’

and ‘copper’; it is also possible that the main interest of the author was to find out the relation between

the axioms and other statements, like ‘if a gaal is copper to another gaal, then the latter is also copper to

the former’. Without further information, there is no way of determining which of these interpretations,

or perhaps some combination of them or even some other possibility, is one that the author had in mind.

In other words, the axioms themselves do not tell you how they were intended to be used. Indeed, it

is easy to augment the story in such a way that any of the above interpretations becomes plausible.

Without such additional information, however, there is no privileged understanding of ‘axiom’ that

forces you to regard any one of the interpretations as correct and the others as incorrect. Moreover,

regardless of the author’s original intentions, you may now adopt any one of the proposed viewpoints

and continue to study these axioms from that perspective.

The previous scenario illustrates some general features of axiomatic systems, which will be

discussed in the following sections (2.2–2.4), whereby different ways of interpreting the mysterious

manuscript are introduced systematically. To clarify discussions on the use of axioms in mathematics

I distinguish three different independent dimensions of axiomatic systems: the presentation of the

axioms (which includes the kinds of language and consequence relation employed), their role, and

function (Table 1). Despite the fact that these dimensions are theoretically separable, in practice an

Presentation Role Function

Language Consequence

natural implicit semantic descriptive
symbolic explicit syntactic prescriptive

formal

Table 1: Three dimensions of axiom systems.

axiomatic system is often not categorized clearly and unambiguously into any one of them. I will

return to a discussion of the imaginary axioms according to these dimensions in Section 2.5 and then,

in Section 3, I will employ these dimensions in a general discussion about where axioms come from.

What is important to realize at this point is that the observation made at the end of the second

paragraph of this section, namely that one can adopt any viewpoint with respect to the role and function

of a given set of axioms, also applies to the situation in which all terms used in axioms have meanings

independently of the axiomatization, e. g., if the axioms are stated as ‘every line segment is congruent

to itself’ and ‘if any line segment is congruent to another line segment, and the second is congruent to

a third line segment, then the first line segment is also congruent to the third one’. However, while
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such a presentation makes the axioms look more familiar, it also complicates the analysis by obscuring

subtle conceptual distinctions.

2.2 The presentation of axioms

A system of axioms must be formulated in a language and have a notion of consequence associated with

it.9 These are the two components of the first dimension of axioms, which concerns their presentation.

This dimension is independent of the other two, which both concern the usage of a system of axioms,

but it differs in one important aspect from them. Although it might not always be straightforward

to determine the kind of language and the notion of consequence that is employed, these are not

completely up for reinterpretation as the aspects of role and function. In other words, we might take

the language and consequence relation as specific characteristics that contribute to the individuation of

a system of axioms. Moreover, given that a formal language is a specific kind of symbolic language,

this means that the different aspects within one dimension are not independent in the way the aspects

of the two dimensions of usage are.

2.2.1 The language of axioms: Natural, symbolic, formal

The kind of language in which axioms are presented can be a natural language or vernacular, it can

contain certain symbols (or words) that are not taken to be part of a given natural language, or its

grammar can be fully specified in a formal way.

The imaginary axioms from Section 2.1 are formulated in some variant of English, i. e., in a natural

or informal language. With the increased use of axiomatic systems in 19th century mathematics a

particular tension related to such presentations became more and more apparent. On the one hand, the

use of familiar terms in the axioms and theorems could be advantageous from a psychological point

of view, by calling forth unforeseen associations, aiding the imagination, and honing one’s intuitions.

On the other hand, such terms often suggest more attributes and relations than are actually specified

by the axioms. For example, one might know that line segments have two distinct endpoints, but this

does not follow from the two axioms about line segments listed above. If axioms are understood as

being the only allowed starting points in the development of a theory, then inadvertently exploiting

such background knowledge in a deduction amounts to a fallacy. A famous example is Euclid’s proof

of the first proposition in Book I of the Elements, where he uses the fact that two overlapping circles

have two points of intersection — something that does not follow (according to our present logical

standards) from the axioms.10

A strategy for averting the danger of unwarranted conclusions that result from unstated assumptions

is to treat the primitives as if they were meaningless (this process has been referred to as ‘emptying

[ . . . ] the terms of contentual meaning’ in [Detlefsen 1998, 422], and ‘de-semantification’ in [Krämer

2003]). Instead of treating familiar terms as if they were devoid of their usual meanings, one can

9 In principle, if axioms are only used in a semantic role, no consequence relation would be necessary. However, as far
as I know, there is always some notion of consequence at play in practice.

10Clearly, this depends on what counts as the allowed modes of inference. More on this issue in Sections 2.2.2 and 5.1.
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introduce new terms (symbols) from the start and stipulate their usage with the axioms, in which case

we speak of a symbolic axiomatization. This suggestion can be found for reasoning in geometry in

Dedekind’s 1876 letter to Lipschitz [Dedekind 1932, 479], and recent psychological experiments,

which show that logical fallacies are spotted more easily if the statements involve unfamiliar terms,

support this strategy [Sá et al. 1999]. Symbolization can come in various degrees and might not be as

easy to detect as one might think. For example, for the author of our imaginary axioms the terms ‘gaal’

and ‘copper’ might not have been part of the vernacular and thus they could have been introduced as

completely new symbols. A clearer instance of symbolization would use single letters, as in ‘Every G

is C to itself’. Finally, not only the primitives, but also the logical terms themselves could be expressed

in symbols, as in ‘∀x(G(x)⊃C(x,x))’. Early examples for symbolic presentations of mathematical

theories are Peano’s axioms for linear systems (vector spaces) and for the natural numbers [Peano

1888; 1889].

The demand for more rigorous mathematics in the 19th century led further to the desire of

completely fixing the grammar of symbolic languages and thus to the development of formal languages,

most famously by Frege [1879]. A formal language consists thus of a determined alphabet together

with explicitly stated rules for constructing well-formed expressions. Typically one distinguishes

between symbols for logical connectives, quantifiers, variables, constants, predicates, etc.11. Closely

related to the kind of language in which the axioms are formulated is the notion of consequence that

underlies deductions.

2.2.2 Implicit and explicit notions of consequence

Since axioms are used as starting points for the development of theories, some notion of consequence

is presupposed to determine what follows from them. In general, however, this notion is not formulated

explicitly. Euclid relied on the notion of consequence implicit in the mathematical practice of his

day, as did Hilbert in his Grundlagen der Geometrie [1899].12 Famous attempts at making explicit

the principles underlying inferences are Aristotle’s syllogisms, the identification of the rule of modus

ponens, Boole’s algebraic treatment of logic, and of course Frege’s Begriffsschrift [1879]. Note that

these often presuppose some regimentation of the language. In connection with formal languages, a

variety of methods have been developed to specify rigorously what counts as a valid formal inference.13

If the rules of inference by which theorems are derived from the axioms are stated explicitly, we speak

of a formalization or formal system [Sieg 1995]. Thus, a formal axiomatization is expressed in a formal

language and employs only explicitly stated inference rules.

Hardly any theory is presented in a completely formalized way in mathematical practice, since

this would require, in addition to a formal presentation of the main notions of the theory, also a

formalization of the background theory (e. g., arithmetic and set theory in case one wants to refer to

11See any textbook on formal logic, e. g., [Enderton 2001] and [Boolos et al. 2007].
12An interesting attempt to explicate Euclid’s reasoning is [Manders 2008a;b].
13To mention a few: syntactic rules, such as modus ponens and substitutions [Frege 1879, Hilbert and Ackermann 1928],

natural deduction and sequent calculus [Gentzen 1935], semantic tableaux [Beth 1955], and resolution [Robinson 1965];
semantic notions of consequence were developed by Tarski [1956 (1936] and Hintikka [2011].
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numbers and sets in the theory). However, in cases where a theory has been formulated very carefully,

as in Hilbert’s geometry, it is often considered rather straightforward to translate a given axiomatization

into a formal language and to apply a logical calculus to it, i. e., to formalize it.14

It is important to notice that formalization can be useful for particular purposes (in particular,

the study of meta-theoretical properties, see Section 5.4), but that it is not a necessary ingredient of

axiomatics, which can be seen from the already mentioned axiomatizations of geometry by Euclid and

Hilbert. Van Heijenoort notes in his introduction to Peano’s Arithmetices Principia [1889] that the

way Peano typically formulates his proofs brings out ‘the whole difference between an axiomatization,

even written in symbols and however careful it may be, and a formalization’, since Peano does

not explicitly formulate rules of inference [van Heijenoort 1967, 84].15 Thus, with regard to the

presentation, Peano employs a symbolic language and an implicit notion of consequence. Nevertheless,

axiomatization and formalization have been frequently conflated, as one can find criticisms that are

directed at formalization being leveled against axiomatization in general.16

2.3 Semantic and syntactic roles

Based on the brief discussion in Section 2.1 of some possible purposes of the imaginary axioms

introduced above, we can distinguish two very different aspects of axioms. On the one hand, we can

focus on their meanings and then the axioms play a semantic role by characterizing (describing or

defining, see Section 2.4) one or more domains (models, structures). Examples of axiomatizations

that are frequently understood in this way are Dedekind’s and Peano’s axiomatizations of the natural

numbers and axiomatic presentations of algebraic groups and fields. On the other hand, we can focus

on axioms as sentences, in which case they serve a syntactic role of systematizing and representing

the propositions pertaining to a theory. Here, the axioms — together with some notion of conse-

quence (Section 2.2.2)17 — determine the sentences (theorems) that can be derived from them. An

axiomatization is thus a stipulation of the starting propositions of a science and at the same time an

initial regimentation of the scientific language, which can be extended by the definition of new terms.

Euclid’s and Hilbert’s axiomatizations of geometry are often understood mainly in this sense.

These roles must not be understood as excluding each other. Indeed, any system of axioms can

play both roles and in many cases they are considered simultaneously. Thus, this distinction pertains

to the focus of attention when the axioms are used. For example, in the early developments of non-

Euclidean geometry the axioms were employed mainly in their syntactic role (with the aim of deriving

a contradiction from the negation of Euclid’s parallel postulate), but later, when models for these

theories were sought, the semantic role of the axioms was at play. There seems to be a tendency to

consider axiom systems with very few and simple axioms as playing mainly a semantic role (e. g.,

axiomatizations of algebraic structures), and axiom systems with more and complex axioms as playing

a syntactic role (e. g., axiom systems for geometry or Hull’s theory of rote learning with 18 postulates

14On difficulties of formalization, see [Rav 1999].
15See also Section 5.1 for a discussion of the separation of statements and inferences.
16See, e. g., [Lakatos 1976] and [van Fraassen 1980].
17Axioms can play a syntactic role, even if the notion of consequence that is used to obtain theorems is a semantic one.
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and 16 primitives [Hull et al. 1940]). Nevertheless, every system of axioms can be viewed both from a

syntactic and semantic point of view, since it is not the axioms themselves that determine the role, but

the person who uses them. For example, we can make deductions from the axioms of group theory and

read axioms of geometry as defining geometric spaces; our two imaginary axioms from Section 2.1 can

be used syntactically as the starting point for the deduction of theorems, or semantically to characterize

systems of objects (‘gaals’) with a binary relation (‘copper’) on them. This double role of axioms

might indeed be a characteristic of mathematical notation in general.18 For example, the symbol i can

be understood to represent an imaginary number (or object), but it can at the same time be manipulated

syntactically according to the usual rules of algebra with the additional restriction that i2 =−1.

2.4 Descriptive and prescriptive axiomatizations

For both the semantic and syntactic roles of axioms it is possible to draw an orthogonal theoretical

distinction depending on the function of the axiomatization. Along the semantic dimension, a system

of axioms can be intended to describe one or more given domains, like natural numbers or substitution

groups, or to prescribe the conditions for certain domains (i. e., to define them). In the language of

modern logic there is only the relation of satisfaction between a system of axioms and its models,

but this obscures the difference between describing and defining a model. The term ‘intended model’

is used to single out the axiomatizer’s intentions, but again this terminology does not allow for a

differentiation between a model that is being described and one that is defined. However, logic is

not to blame for this, since these relations do not pertain to logic per se, but to the pragmatics of

axiom systems. Along the syntactic dimension, the same distinction can be drawn. We can say that a

particular set of axioms describes a certain theory, i. e., a set of sentences that are given independently,

for example, by making repeated observations of triangles. Alternatively, we can say that the axioms

define the theory as consisting of only those propositions that belong to its consequences. Again, this

distinction cannot be expressed in logical terms alone.

The difference between descriptive and prescriptive axiomatizations is often cast in terms of the

meanings of the primitive terms involved (as I did in Section 2.1). If the primitives are assumed to have

a meaning outside of and independent from the system of axioms, the axiomatization is commonly

considered to be descriptive. In this case, Bernays speaks of the axioms being ‘embedded in the

conceptuality of the theory in question’ [Bernays 1967, 189] and Hilbert and Bernays refer to the

axiomatization as material or contentful [Hilbert and Bernays 1934].19 The paradigmatic example

of a material axiom system is Euclid’s Elements, where the terms ‘points’ and ‘lines’ supposedly

refer to points and lines.20 Understood in this way, the axioms in our running example express some

actual properties of gaals and copper (possibly ones that are self-evident, but not necessarily so, see

18See [Sfard 1991] and [De Cruz and De Smedt 2010].
19Weyl also uses the term ‘sachlich,’ which can be translated as ‘realistic’ or ‘matter-of-fact’ [Weyl 1930, 17–18].

Bernays distinguishes between two ‘kinds’ of axiomatics: material or pertinent axiomatics, and definitory or (contrary to the
terminology used in the present article) descriptive axiomatics [Bernays 1967]. The term ‘descriptive axiomatization’ is also
used in [Detlefsen 2013], where the attention is restricted to the syntactic role of axioms.

20What Euclid thought points and lines were is a separate question.
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Section 4.1). A connection is frequently drawn between the dimension of presentation and that of the

function of an axiomatization, such that informal axiomatizations are often interpreted materially, but

this is, again, by no means necessary. Recall that the three dimensions of axioms shown in Table 1 are

independent from each other.

If the meanings of the primitives of an axiomatic system depend entirely on the relations that are

expressed by the axioms, then the axioms are considered to be prescriptive (or normative), i. e., they

determine the subject matter under consideration and one also speaks of them as ‘implicit definitions’.

If the meanings of the terms are presumed fixed, then the axioms simply determine what can be said

about the referents of the primitive terms, in our example, about gaals and copper. However, since

no information about gaals and copper is deemed relevant for the axiomatic presentation that goes

beyond what is stated in the axioms, the axioms could also be seen as being about any other domain

that satisfies them. This leads to the view that the referents of the primitive terms are variable and the

axioms are not statements that can be true or false; rather, they represent schemata for a variety of

different statements.21 In analogy to Russell’s propositional functions, Carmichael refers to axiom

systems as ‘doctrinal functions,’ which yield a doctrine (or theory) if the primitive terms are given

an interpretation [Carmichael 1930]. For example, our imaginary axioms become meaningful if we

consider ‘gaals’ to refer to rational numbers and the relation ‘copper’ to hold between any two rational

numbers whose difference is an integer, e. g., between 3 1
2 and 5 1

2 . Considered in this way, a system of

axioms generally cannot determine a single interpretation for its terms, but only the structure of the

relations that hold between them; understood in this way, axiom systems are also called relational,

structural, algebraic, or abstract. In other words, such a system of axioms does not define one single

model, but a class of models. This state of affairs has also been expressed by saying that the axioms

determine a predicate that is satisfied by their models; Carnap speaks in this connection of the explicit

predicate of an axiom system [Carnap 1958, 175] and Suppes, who considers models to be purely set

theoretic, speaks of axioms as defining a set theoretic predicate [Suppes 1957].

If an axiom system is able to determine all sentences of a given target theory, it is called ‘complete’

(or ‘relatively complete’, if the target consists of a set of sentences that is not necessarily deductively

closed [Awodey and Reck 2002, 4]).22 In this case the differences between the extensions of a

descriptive and a prescriptive axiomatization vanish, which helps to understand the following quote

by Hilbert, who is well aware of the double function that axioms can play, i. e., that they can serve as

definitions and descriptions. Without batting an eyelash he speaks of the role of axioms as being both

descriptive and prescriptive:23

21Historically, intermediate positions were also held, in which the primitives were considered to have fixed meanings, but
where they could be replaced systematically by others, thus yielding a different system of axioms. See, e. g., [Pasch 1882]
and [Enriques 1903].

22For other notions of completeness in mathematics, see [Awodey and Reck 2002] and [Detlefsen 2013]. These more
sophisticated analyses of completeness can be understood as refinements of the framework presented here. We will return to
the issue of completeness in the discussion on the origins of axioms in Section 3.1, below.

23Hilbert’s notion of existential axiomatics can be understood as an attempt to capture both aspects of axiomatizations
just discussed. In existential axiomatics, one first posits a system of objects, which the axioms are then intended to describe.
For a discussion, see [Sieg 2002].
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When we are engaged in investigating the foundations of a science, we must set up a system of
axioms which contains an exact and complete description of the relations subsisting between the
elementary ideas of that science. The axioms so set up are at the same time the definitions of those
elementary ideas [. . . ] (Hilbert 1900a, 298–299; quoted from Ewald 1996, 1104; italics by DS)

2.5 The imaginary axioms revisited

To illustrate the three main dimensions of axioms introduced above, let me briefly return to the

imaginary axioms from Section 2.1 and discuss them in terms of the terminology introduced above.

The first dimension concerns the presentation of the axioms. If the language in which the axioms are

formulated is a natural language, then we assume that the terms ‘gaal’ and ‘copper’ are meaningful

terms in the language of the axioms’ author and that their referents are clear to anybody who speaks

the author’s language, even though we might not know what these are. If the language is symbolic,

then the primitive terms are understood as symbols, whose referents must be specified by other means.

To recognize the language of the axioms as a formal language, we would need to be presented with

explicit rules for forming well-formed expressions in that language. If we have no information about

the notion of consequence that is to be employed, we must consider it to be left implicit.

Once there is agreement on the mode of presentation, there are four different combinations of the

dimensions of role and function. Any axiomatization can be used in any of these four ways, regardless

of the original intentions of the author or the way in which they have been used traditionally. The

possibility of taking these different perspectives accounts for the multiple ways in which axioms can

be employed in mathematics and is reminiscent of the notion of ‘productive ambiguity’ discussed by

Grosholz [2007].

If we consider the main role of the axioms to be semantic, then we focus on understanding their

referents. Are the axioms intended to be used syntactically, the referents are much less relevant, but

the relations between the axioms and other sentences is what matters most. If the are axioms viewed

as being ‘semantic descriptive’, then they express known relations between gaal and copper; if they

are ‘syntactic descriptive’, they represent already accepted statements about them. If the axioms are

‘syntactic prescriptive’, they are stipulations of statements are to be taken as genuine truths about gaal

and copper; in their ‘semantic prescriptive’ role they determine certain relations in which the referents

of ‘gaal’ and ‘copper’, whatever they may be, must stand in order to count as constituents of a model

of the axioms.

2.6 Discussion

My claim that the dimensions of axioms introduced above help to clarify discourse in philosophy

of mathematics can be demonstrated by taking a brief look at other classifications of axiom systems

that have been proposed in the recent literature. In his article on ‘Does mathematics need new

axioms?’ Feferman distinguishes between structural axioms and foundational axioms. The former are

‘definitions of kinds of structures,’ such as ‘groups, rings, vector spaces, topological spaces, Hilbert

spaces, etc.’, and they reflect the common understanding of axioms of the working mathematician.
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Foundational axioms are axioms in one sense in which they are used by logicians, namely ‘axioms

for such fundamental concepts as number, set, and function that underlie all mathematical concepts’

[Feferman 1999, 100; italics in original].24 Prima facie, Feferman’s distinction is based on the function

that the axioms play in their semantic role: structural axioms are prescriptive, while foundational

axioms seem to be descriptive (indeed, the two examples that Feferman discusses ‘started with an

informal “naive” system’). This is, for example, how Easwaran interprets Feferman’s distinction,

considering it to be one between ‘two distinct types of axioms’ [2008, 382]. However, other criteria

also appear to underlie Feferman’s distinction. First, foundational axioms are about one particular

model (up to isomorphism), while structural axioms also allow non-isomorphic models. Second, the

domains that foundational axioms are about, are particular in the sense that they are ‘concepts that

underlie all mathematical concepts’. Moreover, after introducing the distinction Feferman presents the

development of two foundational axiom system, namely the Dedekind-Peano axioms for number theory

and the Zermelo-Fraenkel axioms for set theory, focusing on the latter in his careful discussion of the

reasons for accepting new axioms. In this discussion, however, Feferman mentions that the axioms

have different models, i. e., now considering their function to be prescriptive. While this is reasonable

from the perspective of mathematical practice and corresponds with the attitude towards axioms that

I am advancing in this paper, it does not fit neatly into Feferman’s own classification of axiomatic

systems. After all, as becomes clear in his discussion, foundational axioms are sometimes employed

as structural axioms. To this Feferman could simply reply that when logicians asses their axioms they

become working mathematicians or that the distinction between structural and foundational axioms

was never meant to be an exclusive one; this, however, seems to be more in line with the main tenets

of the present paper than with the way Feferman frames his discussion.

More recently, Shapiro introduced a similar classification of axioms into algebraic and assertory

ones. An algebraic understanding of axioms implies that ‘any given branch is “about” any system

that satisfies its axioms’, whereas axioms are assertory if they ‘are meant to express propositions

with fixed truth values’ by referring to a single mathematical structure (up to isomorphism) [Shapiro

2005, 67]. This distinction also seems to rely on the difference between the prescriptive and the

descriptive functions of axioms. Indeed, Shapiro here also explicitly allows for the same axioms being

‘algebraic from one perspective, and assertory from another’, correcting his ‘potentially misleading’

earlier discussion of arithmetic and real analysis as being non-algebraic [Shapiro 2005, 67, footnote 6].

However, given the restriction that assertory axioms must be categorical, it follows that all axiom

systems that can be viewed as assertory can also be viewed as algebraic, but not vice versa, which is a

consequence that Shapiro does not point out and for which there does not seem to be any independent

reason for accepting it. Moreover, axioms that are used descriptively, but that are not categorical (e. g.,

Dedekind’s axioms for ‘number modules’, which developed into the prescriptive axioms for lattices

[Schlimm 2011, 53–57]) do not fit nicely into Shapiro’s classification.

24The second sense in which logicians speak of axioms is for ‘laws of valid reasoning that are supposed to apply to all
parts of mathematics’, but Feferman does not discuss this usage further.
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One general difficulty that arises with such classifications of axioms as those by Feferman and

Shapiro is that they really are classifications about the intended use of axioms, not about the axioms

themselves. For example, for all we know Peano might have intended his axioms to describe the

structure of the natural numbers, i. e., they are ‘foundational’ or ‘assertory’ in Feferman’s and Shapiro’s

terms. However, assuming that Peano’s language is a first-order language, then the axioms are not

categorical, thus they do not uniquely determine this structure, which would make them ‘structural’ or

‘algebraic’. So, what are they? Using the terminology introduced in this paper, we can say that Peano

intended his axioms to be descriptive, but that when they are used in a prescriptive role, they have

non-isomorphic models.

3 Where axioms come from

Let us briefly return to the short story about the mysterious manuscript from Section 2.1. Related to

the question regarding the author’s intentions when writing down the axioms is the following: Where

do the axioms come from in the first place? Or, in other words: Why did the author write down these

axioms and not others?

If mathematics were nothing but a game with formal systems, it would be sensible to write down

a number of unmotivated statements and take them as axioms for a new mathematical theory. In

practice, however, I am not aware of any introduction of a new system of axioms that was not related

in some rational way to a previously given body of knowledge. Recall that geometry existed before

Euclid, non-Euclidean geometry grew out of the axioms for Euclidean geometry, number theory was

practiced before Dedekind’s and Peano’s axiomatizations, and set-theoretic theorems were proved

before ZFC became the canonical system of axioms for set theory. Given the two different roles

of axioms identified in Section 2.3, the connection between new axioms and existing mathematics

can be established on the basis of syntactic or semantic factors. For example, the links to a given

body of knowledge can be a number of statements that are accepted about the subject matter (e. g.,

about possible constructions with straightedge and compass) or a previously given system of axioms;

alternatively, the previous mathematical knowledge can also involve one or more particular domains

that the axioms are intended to characterize (e. g., natural numbers, groups of substitutions). Finally,

as the examples make clear there is certainly more than one single way to arrive at new axioms. In the

remainder of this section I shall discuss what I take to be the main considerations that are involved in

the formulation of new axiom systems, treating syntactic (Sections 3.1–3.2) and semantic (Section 3.3)

origins of axioms separately.

3.1 Reasoning from theorems

According to the orthodox picture, axiomatizing consists merely in ‘introducing order into an already

developed field’ [Copi 1958, 115], where a substantial number of statements that are part of a theory

have already been obtained and the axiomatizer judiciously picks out some of them from which all

others can be deduced. Seen in this way, axiomatizing might require some skill and experience, but is
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not a truly creative process. Nevertheless, axiomatics has a certain critical function, since it allows for

the discovery of circular arguments and hidden assumptions, and for the exposure of previous flaws or

inaccuracies in our reasoning. One strategy for arriving at the axioms is to reason one’s way backwards

from certain accepted propositions in such a way that the latter become theorems that are provable

from the axioms. This procedure goes back to ancient Greek mathematicians and has been discussed

in the literature under various names, such as analytical, abductive, regressive, critical, retroductive,

or axiomatic methods.25

Historically, one of the earliest and most extensive accounts of a heuristic device for finding

suitable axioms to prove given conjectures and for solving construction problems, called the method of

analysis and synthesis, was given by Pappus of Alexandria (ca. 290–330 AD). According to a popular

reading, this procedure is roughly as follows. The analysis consists in assuming a statement s to be

proved and deriving from it a series of consequences ending in c, until either c is recognized as false

(in which case s is also false) or it is recognized as being true. In the latter case, the synthesis consists

in deriving s from c. In strictly logical terms this method is problematic, because it is not the case in

general that if one can deduce c from s, one can also deduce s from c. Thus, Greek analysis guarantees

success only in cases in which convertible inferences are used in the deduction of c.26 Alternatively,

possible candidates for axioms can be obtained by a judicious procedure of trial and error.

Regardless of how the new axiom c has been obtained, we can distinguish between the following

variants of this method: (a) The method aims at reducing conjectures to already accepted axioms.

(b) The method labels certain already accepted statements as axioms. (c) It yields completely new,

previously unknown statements as axioms.27

If analysis is understood in the sense of (a), an independent criterion is necessary for determining

the membership in the set of axioms, to enable us to know when to stop our quest. The most

uncontroversial ideas seems to be that axioms should be simple, but what that amounts to in practice

is difficult to make precise. This and other possible criteria for axioms are discussed in Section 4,

below. The view that axiomatizations are guided by independent criteria for what counts as an axiom

is expressed, for example, by Bocheński [1954, 82], where the ‘regressive method’ is said to proceed

from theorems to known premises, but without specifying how they came to be known.

In the absence of an independent criterion for axioms, axioms could be singled out exclusively on

the basis of being the starting points of derivations. This leads to variants (b) and (c) above. If the

axioms belong to the already accepted statements, then axiomatization amounts to a reorganization of

the statements in question. Such an understanding is expressed, for example, in Corcoran’s description

of the axiomatic method:

originally, a method for reorganizing the accepted propositions and concepts of an existent science
in order to increase certainty in the propositions and clarity in the concepts. [Corcoran 1995, 57]28

25See [Hintikka and Remes 1974], [Lakatos 1978b], [Otte and Panza 1997], [Peckhaus 2002], and [Grosholz 2007,
Ch. 2].

26An inference from a to b is said to be convertible, if the inference from b to a is also valid.
27The distinction between (b) and (c) is also discussed in [Detlefsen 2013].
28See also [Hilbert 1903, 50] for a similar statement.
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For a more detailed discussion on how to use the character of proofs and definitions to assess different

axiomatic systems, see Section 4.4.

In variant (c), analysis is understood as a creative activity that yields hitherto unknown statements

as axioms. Such statements might at first be considered only hypothetically, before they are accepted

as axioms. Indeed, they could well be surprising and obscure, and might even contain new primitives.

For example, in order to prove c, one might be led to consider the statements ‘a’ and ‘a⊃ c’ as axioms,

where a contains new primitives. In practice, further criteria are often also appealed to in this case to

restrict what can be taken as an axiom. C. S. Peirce considered the form of inference of kind (c) to be

a logical inference on a par with induction and deduction, called abduction.29 According to Peirce,

abduction ‘consists in examining a mass of facts and in allowing these facts to suggest a theory. In this

way we gain new ideas; but there is no force behind the reasoning’ [Peirce 1958–1966, 8.209].30

According to Copi’s and Corcoran’s views of axiomatization mentioned above, we seek axioms

in order to be able to derive not only particular theorems, but all statements of a given domain, i. e.,

we want axioms to be complete.31 Of course, this presupposes a descriptive conception of axioms

(see Section 2.4) together with some independent access to the body of knowledge that is being

axiomatized. The latter is by no means trivial, as can been seen from the fact that at the Second

International Congress of Mathematicians in Paris (1900), Hilbert considered one of the great open

tasks of the axiomatic approach in geometry to be to show ‘that the system of axioms is adequate to

prove all geometric statements’ [Hilbert 1900b, 257]. In practice one often has only a finite set of

known statements that one wants to deduce from the axioms, in which case the axioms are ‘relatively’

or ‘quasi-empirically’ complete [Awodey and Reck 2002, 4].

3.2 Manipulation of axioms

Another quite common — though rarely discussed — source for axiom systems is other axiom systems

that have been developed previously. New systems can be obtained relatively easily by deleting,

negating, or otherwise modifying given axioms, or by adding axioms to a given set. In reference to the

early 20th century, Kline comments on this practice as follows:

The opportunity to explore new problems by omitting, negating, or varying in some other manner
the axioms of established systems enticed many mathematicians. This activity and the erection of
axiomatic bases for the various branches of mathematics are known as the axiomatic movement. It
continues to be a favorite activity. [Kline 1972, 1027]

Most famously, the axioms for non-Euclidean geometries were obtained in this way, with the original

goal of showing the necessity of Euclid’s parallel postulate. Modifying a given set of axioms is an

exploratory process that reveals some game-like aspects of mathematics. However, for accepting a

system obtained in this way, mathematicians usually demand other independent motivations — for

example, that the system have genuine mathematical models, as opposed to models that are concocted

29See [Peirce 1990 (1896–1908] and [Peirce 1902].
30This idea was later taken up and further elaborated by Hanson [1958b, 85–86].
31For a discussion of various notions of completeness, see [Awodey and Reck 2002].

17



only for the sake of satisfying the axioms. Two illustrative historical case studies for this kind of

proceeding are Schröder’s and Dedekind’s axiomatic introductions of the notion of lattices [Schlimm

2011].32

The modification of a given system of axioms might appear as the least genuinely creative

mathematical process and more akin to investigations based on blind trial and error. Nevertheless,

some mathematics was developed in this way, which refutes the orthodox view about mathematics that

claims that all axiomatizations describe some previously given ‘substance’.

3.3 Conceptual analysis of one or more domains

The previous two sections were mainly concerned with the syntactic role of axioms; we now turn to

the semantic one. Mathematicians often have a more or less clear conception of the objects of their

investigations and sometimes they employ axioms to characterize these objects as sharply as possible.

If practiced in this sense, axiomatization is a method of conceptual analysis, broadly understood. The

natural numbers, some of the oldest and most basic mathematical objects, are a prime example. How

can the natural numbers be described best? This was one of the leading questions behind Dedekind’s

and Peano’s famous axiomatizations [Dedekind 1888, Peano 1889]. Dedekind’s letter to Keferstein

[Dedekind 1890] is an illuminating testimony of the deliberations that led Dedekind to his axioms.

The result, he explains, did not come about

in one day; rather, it is a synthesis constructed after protracted labor, based upon a prior analysis
of the sequence of natural numbers just as it presents itself, in experience, so to speak, for our
consideration. [van Heijenoort 1967, 99]

Note Dedekind’s terminology of ‘synthesis’ and ‘analysis’, discussed in Section 3.1 above, but where

analysis is now applied to ‘the sequence of natural numbers just as it presents itself’, not to statements

about them. In modern terminology, Dedekind began with a careful analysis of an intended model,

‘[t]he number sequence N [which] is a system [or set] of individuals, or elements, called numbers’

and he asked himself: ‘What are the mutually independent fundamental properties of the sequence

N, that is, those properties that are not derivable from one another but from which all others follow?’

[van Heijenoort 1967, 99–100]. Notice that already at the very starting point of his investigations, the

syntactic aspects of axioms are considered together with the semantic ones: derivability on the one

hand and properties of N on the other.33 In addition to the categorical axiom system for the structure

of natural numbers, Dedekind also formulated a system of axioms to characterize substitution groups,

thus using axioms to describe a family of non-isomorphic structures. Incidentally, his axiomatic

attitude allowed him to recognize similarities among various mathematical structures, like rotations

and quaternions, and to identify them as instances of the abstract notion of group [Dedekind 1932,

32According to the cognitive psychologist Kevin Dunbar, ‘conceptual change [ . . . ] is the result of tinkering’ [Dunbar
1997, 488], which lends support to the claim that tinkering with axiom systems can be conducive to conceptual innovation.

33For an detailed discussion of Dedekind’s axiomatization of the natural numbers, see [Sieg and Schlimm 2005].
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439]. As these examples of Dedekind’s axiomatic work show, both a single domain (like the natural

numbers) and various analogous domains (like groups) can be the source for a system of axioms.34

Various ways of spelling out the relation between the given domain(s) and the result of the analysis

have been introduced by philosophers. In the following, I shall employ Carnap’s notion of explication.

A stronger notion, according to which the description is understood as uncovering essential constituents

of the analysandum, is sometimes referred to as ‘conceptual analysis’; this term is then used in a

narrower sense that I have been using it in the present section.35 If an axiomatization is understood

to be the presentation of a domain that is given non-axiomatically in the sense of an explication or

rational reconstruction of the theory of that domain, this amounts to the transformation of informal

or not yet satisfactorily axiomatized notions into more exact ones [Carnap 1950, 3].36 Despite one’s

best intentions of being descriptive, however, it may happen that the description and what is being

described do not fully agree. This is often the case because the source domain is not yet very sharply

conceived and is only a vague notion.37 This divergence is also pointed out in Hilbert, von Neumann,

and Nordheim’s paper on the foundations of quantum mechanics: ‘The concepts that previously were

a bit vague, like probability and so on, lose their mystical character through the axiomatization, since

they are then implicitly defined by the axioms’ [Hilbert et al. 1927, 3]. In many cases an axiomatization

does not simply exhibit the commonly accepted meanings of the terms that occur as primitives, but

rather ‘proposes a specified new and precise meaning’ for them [Hempel 1952, 11]. In other words,

the original conception of the source domain and its expression in the axiomatic theory do not coincide

(for formal axiomatizations certain limitations are even insurmountable, as is evidenced by Gödel’s

first incompleteness theorem). Hempel concludes that a descriptive axiomatization ‘cannot be qualified

simply as true or false; but it may be adjudged more or less adequate according to the extent to which

it attains its objectives’ [Hempel 1952, 12]. Thus, not only does he point out the divergence between

source and target just mentioned, but Hempel also emphasizes that axiom systems can have different

objectives. (The descriptive and prescriptive aims were introduced in Section 2.4; other goals of

axiomatizations will be discussed in Section 4.)

The axiomatization of set theory provides a good illustration of the possible tension between a

source theory and an axiomatization.38 To highlight the difference between the source theory (mainly

Cantor’s) and the axiomatic theory (his own), von Neumann introduced the term ‘naive set theory’ to

refer to the former. He describes the relations between the source theory, the axioms, and the new

axiomatic theory as follows:

To replace this notion [i. e., the naive notion of set] the axiomatic method is employed; that is,
one formulates a number of postulates in which, to be sure, the word ‘set’ occurs but without any

34See also [Schlimm 2011] for similar observations with regard to the introduction of lattices. On the use of axioms to
characterize analogies, see [Schlimm 2008].

35For a discussion of various notions of conceptual analysis and explication, see [Beaney 2000; 2004]; see [Beaney
2012] for an excellent overview of various philosophical notions of ‘analysis’, which includes also the ancient Greek one
mentioned earlier.

36See also [Kreisel 1967].
37An illustrative example: When asked about the notion of set, Cantor is reported to have answered ‘A set I imagine as an

abyss’ [Dedekind 1932, 449].
38See [Maddy 2001] for a discussion of various motivations behind the axiomatization of set theory.
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meaning. Here (in the spirit of the axiomatic method) one understands by ‘set’ nothing but an
object of which one knows no more and wants to know no more than what follows about it from
the postulates. The postulates are to be formulated in such a way that all the desired theorems of
Cantor’s set theory follow from them, but not the antinomies. In these axiomatizations, however,
we can never be perfectly sure of the latter point. ([von Neumann 1925, 36]; quoted from [van
Heijenoort 1967, 395])

In this connection it is no surprise that Poincaré, when discussing Zermelo’s axiomatization, leaves

the German term for set, ‘Menge’, rather than translating it into the French ‘ensemble’. He did so on

purpose and explains:

It is because I am not sure that the word Menge in these axioms retains its intuitive meaning,
without which it would be difficult to reject Cantor’s definition; now, the French word ensemble
suggests this intuitive meaning too forcefully for us to use it without inconvenience when the
meaning is altered. [Poincaré 1963 (1913, 57]

Here Poincaré points out that the term used in the axiomatization might have a different meaning than

the term ‘Menge’ as it is used in Cantor’s theory.

Whether a proposed set of axioms is adequate, i. e., whether they are necessary and sufficient to

capture the given body of knowledge, is not a straightforward issue, and so additional arguments are

often put forward to justify and guide the formation of axioms. Purely semantic considerations often

involve model-theoretic investigations of the axioms, e. g., Dedekind’s arguments for the satisfiability

and categoricity of his axiomatic characterization of the natural number structure. More often, however,

syntactic arguments are also adduced to support axioms. Zermelo and von Neumann argued for the

adequacy of their axiomatizations of set theory by showing how central theorems of Cantor’s theory

follow from them, while the paradoxes seemed to be avoided.

Since axiomatization can be employed to contribute to the clarification of concepts and the

construction of foundations for a discipline, many mathematicians who pursue the axiomatization of

concepts or theories can be said to be engaged in philosophical work [Suppes 1968, 653]. Thus, it

is no coincidence that many of the more philosophically inclined remarks made by mathematicians

come from those who held axiomatics in general in high esteem, like Frege, Dedekind, Peano, Hilbert,

Bernays, and Russell (despite disagreeing on more specific issues of axiomatization).

3.4 Proofs and refutations

The possible origins of axiom systems mentioned above reflect the different roles and functions that

axioms can play in mathematics and they by no means exclude each other. Rather, in practice they

are often employed together. Consider for example the strategy suggested by Russell for ‘regressive

investigations,’ which are motivated by the appearance of a contradiction:

first, to make a kind of hierarchy of obviousness among the results to which our premises ought
to lead, then to isolate, if possible, the premises from which contradictions flow, and the kind of
reasoning which gives rise to the contradictions, and then to invent various modifications of the
guilty premises, applying to such modifications the two tests (1) that they must yield the more
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obvious of the results to be obtained, (2) that they must not yield any demonstrably false results.
[Russell 1973 (1907, 280; italics by DS]

Here Russell suggests to begin with ranking the statements of a given body of knowledge, in order

to assess possible axiomatizations. Since he considers the investigation to be motivated by the

occurrence of an inconsistency, he suggests to isolate those axioms or forms of reasoning that led

to the contradiction. Then, these axioms are to be modified and then assessed with respect to their

consequences. Thus, all three main sources of axiomatizations discussed above, namely reasoning

from theorems, manipulation of given axioms, and conceptual analysis, are appealed to.

The road to axioms is certainly not a one-way street. When presented in textbooks, we might find

the axioms stated at the very beginning, but the situation is very different during the process in which

a set of axioms is first formulated and consolidated.39 In practice axioms are tentatively formulated

to describe some notion or to capture some of its characteristic properties; then their consequences

and meta-mathematical properties are investigated, the axioms are reformulated, and so on. The

experimental nature of axiomatic investigations is illustrated in Givant’s description of the atmosphere

at the seminar on mathematical logic led by Łukasiewicz:

The participants viewed the seminar as a kind of logico-mathematical laboratory where they could
conduct experiments in assessing the expressive and deductive powers of various theories. [Givant
1999, 52]

This (in part empirical) process is similar to that of finding the ‘right’ definition of polygons, as well

as to the proof of Euler’s formula, as it is presented in Lakatos’ Proofs and Refutations [1976]. In

both cases, we find a continuous alternation of initial conjectures, deductive arguments, semantic

considerations, and various kinds of refinements.

4 What are good axiom systems?

Some criteria for assessing individual axioms as well as systems of axioms are discussed in this section.

These criteria can be used to assess whether to accept a proposed axiomatization or to choose between

logically equivalent systems of axioms. It should be noted, however, that these criteria may very well

conflict with each other. As will become evident in the discussion, although many criteria seem to

be quantitative at first (e. g., one should have few axioms) it is in the end almost always qualitative

considerations that matter most.

Traditionally, axioms have been considered to be somehow epistemologically or metaphysically

privileged. As I shall argue in Section 4.1, however, this has often been only an ideal that was not

achieved in practice. Similarly, the desire that axioms should be somehow simple has been repeated

frequently, but is difficult to make precise, and is readily jettisoned in light of other considerations. In

other words, ‘intrinsic’ [Maddy 1988, 482] criteria for justifying axioms play only a secondary role in

39On the distinction between textbook mathematics and mathematical practice, see [Schlimm 2013], and on the role of
concepts in these investigations, see [Schlimm 2012].
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mathematical practice; some of the more relevant, extrinsic criteria for axiom systems are addressed in

Sections 4.2–4.4.

4.1 Narrow philosophical vs. mathematical concerns

We have seen that in an axiomatic presentation the axioms are logically prior to the other statements

of a theory, but this does not necessarily mean that they also enjoy a privileged epistemological or

ontological status. While the term ‘axiom’ has traditionally been reserved for those propositions

of a theory that enjoy a particular epistemological status, this understanding has not been the most

important for mathematical practice. In particular, many mathematicians increasingly objected to

metaphysical views that were considered irrelevant for mathematics, and to narrow epistemological

views, that were based on an ability of immediately grasping mathematical truths. This is not to

say that broader epistemological concerns might not be relevant for guiding an inquiry or helping to

decide between alternative axiomatizations, but rather that, in case of disagreement, mathematical

concerns ultimately determine which propositions are accepted as axioms and which are not.40 Before

addressing such concerns in the following sections, I briefly present some historical views regarding

the status of axioms.

Aristotle considered axioms to be evident necessary truths (Posterior Analytics, I.5; McKeon 1947,

20), but this ideal had been violated in mathematical practice already in his own times [Mueller 1969,

294]. Most famously, the obviousness of Euclid’s fifth postulate had been called into question from

the very early commentators onwards. Still, regarded as an ideal, the criterion of self-evidence has

continued to be very popular in philosophical discussions of axioms. Pascal, for example, in what he

calls the ‘method of the geometrical proofs or the art of persuading,’ lists as the only necessary rule for

axioms: ‘Not to demand, in axioms, any but things that are perfectly evident of themselves’ [Pascal

1909–1914]. And over three centuries later, in 1918, Hermann Weyl writes that among the assertions

of mathematics there ‘are a few which are immediately recognized as true, the axioms’ [Weyl 1994

(1918, 17].41

The independence of mathematical progress from metaphysical assumptions was also demanded

fairly early on. As Leibniz remarked, ‘there is no need to make mathematical analysis dependent on

metaphysical controversies’.42 Decisive developments, however, took place during the 19th century.

Kant regarded the axioms of geometry as evident synthetic judgments a priori, which are given in

intuition. But, in the wake of the emergence and acceptance of non-Euclidean geometries, the a priori

character of axioms was seriously questioned. As a result, empiricist or conventionalist views became

en vogue. For example, the axioms of geometry were considered as (idealized) facts by Helmholtz

and as conventions by Poincaré. The latter famously argued that Euclidean geometry is not synthetic

40There are exceptions: Brouwer’s intuitionism, for example, is one of them. In general, however, nothing is sacred, not
even the venerated law of the excluded middle of Aristotle, as Russell admits: ‘I once attempted a partial denial of the law of
excluded middle as an escape from the contradictions; but plainly it is better to attempt other denials first’ [Russell 1973
(1907, 279].

41For a recent analysis of notions of self-evidence, see [Shapiro 2009].
42‘On n’a point besoin de faire dependre l’analyse mathematique des controverses métaphysiques’, [Leibniz 1859, 91],

quoted from [Krämer 2003, 534].
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a priori — since it is not the only conceivable geometry — and neither an empirical science, and

concluded:

[T]he geometrical axioms are therefore neither synthetic a priori intuitions nor experimental facts.
They are conventions. [. . . ] What then are we to think of the question: Is Euclidean geometry
true? It has no meaning. [. . . ] One geometry cannot be more true than another; it can only be
more convenient. [Poincaré 1952 (1901, 50]

The above developments slowly led to the emergence of the relational view of axioms, in which the

question regarding the truth of the axioms became relativized to particular models. At the same time

mathematicians increasingly began to separate mathematical from narrow epistemological questions

concerning axioms, relegating the latter to philosophy.43 An early formulation of this tendency is given

by Felix Klein:

But the question [regarding the justification of the parallel postulate] is obviously a philosophical
one, which concerns the most general foundations of our knowledge. The mathematician as such is
not interested in this question and wishes that his investigations are not regarded as depending on
the answer that might be given to the question from one side or the other. [Klein 1893, 493–494;
italics in original]

According to the geometer Schmidt, it was exactly the neglect of epistemological concerns that

allowed Hilbert to gain such a high degree of logical clarity in his 1899 Grundlagen der Geometrie

[Schmidt 1932, 406]. The separation between foundational or logical questions from epistemological,

psychological, and empirical ones is expressed explicitly at the turn of the 20th century by the Italian

school of mathematicians around Peano and also by the American postulate theorists Huntington and

Veblen.44 They all reject discussions regarding the status of axioms as non-mathematical and make

this clear by a deliberate choice of terminology. For example, Huntington speaks of ‘the method of

postulates’ [Huntington 1937, 482], while Veblen writes:

We shall not enter into the metaphysical questions as to whether these assumptions [i. e., the
starting points of deductions] are self-evident truths, axioms, common notions, experimental data
or what not, but shall try to keep within the realm of mathematics by using the non-committal
word assumptions. [Veblen 1914, 4–5]

Paul Bernays gave a nuanced analysis of these developments in his reflections on ‘Hilbert’s

significance for the philosophy of mathematics’ [1922]. As he explains, it was not philosophy in

general that was rejected by mathematicians, but only the traditional view, heavily influenced by Kant,

according to which mathematical knowledge is established somehow a priori, i. e., without recourse to

mathematical investigations. He writes:

The framework which earlier philosophical views, and even Kantian philosophy, had marked out
for mathematics was burst. Mathematics no longer allowed philosophy to prescribe the method
and the bounds of its research; rather it took the discussion of its methodological problems into its
own hands. ([Bernays 1922, 94]; quoted from [Mancosu 1998, 190])

43See [Bernays 1922, 94].
44See, e. g., [Padoa 1901, 121] and the account in [Scanlan 1991, 988].
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Thus, we do not get an elimination of philosophy of mathematics, but a re-orientation, such that

practical and methodological considerations became part of it.

Parallel to the developments in mathematics, axiomatizations of physical theories also contributed

to the abandonment of the view that axioms represent a priori truths.45 Instead, by showing that

provisional hypotheses could lead to empirically tested consequences, the truth of the premises was

held to be established a posteriori, if at all. Such a view is expressed, e. g., in Newton’s fourth rule of

philosophizing in Book III of the Principia, where he demands that facts should determine the theory.46

To explain ‘in what sense a comparatively obscure and difficult statement may be said to be a premise

for a comparatively obvious proposition’ [Russell 1973 (1907, 272] Russell distinguished, both in

science and mathematics, between empirical (epistemically prior) and logical (logically prior, i. e.,

simpler) premises.47 For him, the method for obtaining and believing in the principles of mathematics

or the general laws of science is ‘substantially the same’, namely induction: ‘we tend to believe in the

premises because we can see that their consequences are true’ [Russell 1973 (1907, 273–274]. While

scientists might feel uneasy accepting axioms on logical grounds alone,48 at the end of the day they

will accept them, if no viable alternatives are at hand.49 Thus, just as in mathematics, metaphysical

and epistemological criteria for axioms in physical theories were increasingly replaced by logical and

pragmatic ones. The psychologist Clark Hull put this quite succinctly:

The history of scientific practice so far shows that, in the main, the credentials of scientific
postulates have consisted in what the postulates can do, rather than in some metaphysical quibble
about where they come from. [Hull 1935, 511]

In sum, both metaphysical and narrow epistemological concerns might play a role in the motivation

and assessment of axioms, but they do not impose incontrovertible conditions for axiomatizations that

are used in scientific and mathematical practice. This observation is confirmed also by Maddy’s most

recent investigation of set theory. The final sentence of her book reads ‘What does matter, all that

really matters, is the fruitfulness and promise of the mathematics itself’ [Maddy 2011, 137].

4.2 Number of axioms and primitives

For a set of axioms to be of practical use for human mathematicians it must be presented in such a

way that makes it easy to survey, in particular to be able to ascertain what are the axioms. For this

reason the number of axioms is the desideratum for axiomatic systems that is mentioned most often in

45This development is presented in detail in [Pulte 2005].
46See [Densmore 1996, 242].
47Similarly, Reichenbach introduced a distinction between theories according to the empirical character of their axioms,

distinguishing between deductive axiomatics, which begins with general statements that are not subject to direct empirical
tests, and constructive axiomatics, where only empirically testable statements can be used as axioms [Reichenbach 1925].

48Consider for example Einstein’s remark that the introduction of conceptual elements that are not assumed to be real,
but determine the behavior of real objects without being affected by them (e. g., the hypothesis of a center of the universe, or
of an inertial system), ‘though not exactly inadmissible from a purely logical point of view, is repugnant to the scientific
instinct’ [Galilei 1967 (1632, xiii]. See also Friedman’s notion of ‘independently acceptable sentences’ as a criterion for
scientific premises [Friedman 1974, 16].

49In terms of the ‘Classical Model of Science’ presented in [de Jong and Betti 2010, 186], this means that conditions
(4)–(7) lost more and more of their grip.
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the literature. For example, Bernays speaks of ‘a few’ [1922, 94] and Blanché of ‘a small number’ of

axioms [1973, 163]. Many famous axiomatizations consist in fact of only a small number of axioms,

like Zermelo’s seven axioms of set theory, Kolmogorov’s three axioms of probability theory, or Euclid’s

initial five axioms for geometry (although more are added as the need arises). Other than just having a

‘direct aesthetic appeal,’ a minimal set of assumptions has also been proposed as an indicator for ‘the

seriousness of our understanding of the theory, and a measure of depth of its development’ [Suppes

1968, 656].

Of course, any finite set of axioms can be reduced to a single axiom by conjunction. However, in

practice, mathematicians appeal to some notion of simplicity (see below) that rules out such trivial

reductions, e. g., by tacitly assuming that axioms do not have conjunction as the main sentential

connective.50 Nonetheless, one cannot impose the general restriction to a finite number of axioms,

since this would rule out, for instance, the Zermelo-Fraenkel axioms for set theory, which include

infinitely many axioms of separation and replacement; or, the standard first-order axiomatization of

the natural numbers, which has an induction axiom for every predicate; or, the elementary theory of

geometry, which has infinitely many continuity axioms.51 These axioms, however, because they share

a common form, can be encoded by an axiom schema, which allows for a concise presentation.52

The formal property of recursiveness may be required to ensure easy surveyability, but only as

a necessary, not as a sufficient condition. For example, the recursive axiomatization resulting from

Craig’s [1956] procedure of eliminating a certain set of primitives from a given system of axioms

surely would not be considered to be a practically useful axiomatization by any means. These worries

are reflected in Corcoran’s observation that ‘one feels that there is something illegitimate about taking

an infinite number of sentences as axioms’ [Corcoran 1973, 42].53

In addition to limiting the number of axioms, reducing the number of primitives is also frequently

mentioned as one of the objectives of axiomatizations.54 However, mathematicians also value a certain

familiarity with the axioms and notions that are employed. The tension between these two desiderata

is illustrated in the development of axiomatizations of propositional logic, where we can first observe

a trend of reducing the numbers of axioms, followed again by an increase, while retaining similar rules

of inference55 (Table 2).

This development was also accompanied by the reduction of the primitives of propositional logic

to a single one, rejection [Sheffer 1913].57 In the introduction to the second edition of Principia

50This is explicitly mentioned in [Moore 1902, 488–489].
51See [Tarski 1959, 167].
52The notion of axiom schemata was introduced in [von Neumann 1927, 13]. In this connection it is worth pointing the

reader to Tennant’s discussion of a recent interesting result by Friedman, according to which ‘In every first order theory
axiomatized by axioms and axiom schemes, subject to mild conditions, every theorem follows logically from at most finitely
many logically minimal sets of its axioms and axiom-scheme instances’ [Tennant 2012, 276–285].

53See also [Adams et al. 1970, 381] with regard to the use of infinite axiom systems for empirical theories.
54See, e. g., [Parsons 1972, 190].
55The relation between axioms and inferences rules will be addressed in Sections 4.4 and 5.1, below. It is also worth

mentioning that the authors mentioned often considered different axioms and inference rules themselves.
56See [van Heijenoort 1967, 29], [Russell and Whitehead 1910, 13], [Nicod 1917], [Łukasiewicz 1970], [Hilbert and

Ackermann 1928, 22], and [Kleene 1952, 82].
57This connective is attributed to Sheffer and called the ‘stroke’ in [Nicod 1917, 32].
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1879 Frege 6 axioms
1910 Russell & Whitehead 5 axioms
1918 Nicod 1 axiom
1925 Łukasiewicz 1 axiom
1928 Hilbert & Ackermann 4 axioms
1952 Kleene 10 axioms

Table 2: Historical development of the number of axioms for sentential logic.56

Mathematica (1927) this was hailed by Russell as the most important contribution in logic since the

appearance of the first edition over a decade earlier.58 Clearly, if this were the only connective, proofs

would become much longer, and the logical formulas would become more difficult to parse. Accord-

ingly, Hilbert and Ackermann refer to this reduction only as a ‘curiosity’ [Hilbert and Ackermann 1928,

9]. However, the search for particularly parsimonious axiomatizations for various theories continues to

this day, now with the help of automated reasoning techniques.59

Another aim that can stand in conflict with the goal of reducing the number of axioms is to exhibit

the relation of one axiomatization to another theory (see also Section 4.4). For example, Kleene’s

axiomatization of propositional logic consists of ten axioms, but by modifying a single one of them, it

can be transformed into an axiom system for intuitionistic propositional logic [Kleene 1952, 82 and

101]. Both the tendencies towards logical economy on the one hand and towards conceptual clarity

and intuitiveness on the other, are identified by Schmidt in Hilbert’s formulation of the axioms for

geometry, and he notes that if they stand in conflict, for Hilbert it is the logical economy that has to

give [Schmidt 1932, 406].

Mathematicians seem to have developed some stable notion of simplicity, but one that is very

difficult to make precise. One attempt is to resort to logical simplicity, which can be characterized as

having fewer logical constituents or fewer types of non-logical elements.60 Other criteria of simplicity

for the axioms can be their logical form, or the number and the character of the primitive concepts

employed. The latter has been studied extensively by Nelson Goodman in connection with explicating

the notion of the measurement of formal simplicity of predicate bases of scientific theories.61 Several

syntactical, language related, and semantical criteria of simplicity for axiom systems in first-order

logic are discussed in [Pambuccian 1988], and a formal criterion for ‘natural axiomatizations’ is put

forward in [Gemes 1993]. However, the numerous attempts at formally characterizing what it means

for a statement to be logically simple have not yielded a generally agreed upon proposal.

4.3 Meta-mathematical properties: Consistency, independence, and categoricity

In addition to the various notions of completeness, which were discussed earlier in connection with the

origins of axioms, and to the surveyability of the axioms the only desideratum for a good axiomatization

58See [Linsky 2011] for the background regarding the second edition of Principia Mathematica.
59See, e. g., [Ernst et al. 2002] and [McCune et al. 2002].
60This is mentioned, e. g., in [Cohen and Nagel 1934, 213]; see also [McCune et al. 2002].
61[Goodman 1958]; see also [Rudner 1961] and [Bunge 1962].
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on which there is almost unanimous agreement is that of consistency, i. e., the impossibility of deriving

a pair of statements one of which is the logical negation of the other. For, under most commonly

accepted notions of consequence, any statement whatsoever follows from a contradiction. This renders

an inconsistent system of axioms utterly useless from a logical point of view, because the theory that

is determined by it comprises all well-formed statements that can be formulated in the underlying

language, and because there can be no model that satisfies such a set of axioms.62

However — and the reader who has followed the dialectic of the previous discussions may already

suspect a certain tension arising even from such a seemingly unproblematic constraint — a word of

caution is in order: In practice it may not be known at a certain point in time whether a system of

axioms is consistent or not, and an inconsistent system may well serve as a promising starting point for

the further development of a science. For example, despite the fact that early conceptions of sets turned

out to be inconsistent (which was known to Cantor himself, who distinguished between consistent and

‘absolutely infinite or inconsistent’ sets to get around this [Hallett 1984, 166]), many ideas and proofs

were not affected by this and set theory has developed nonetheless into a well-respected mathematical

discipline. A somewhat similar story can be told about certain aspects of Frege’s work on logic. Thus,

even inconsistent theories may play a crucial role in scientific development and cannot be dismissed

right away if the practice of science is under investigation.63

Due to Gödel’s fundamental limiting result that it is not possible to prove the consistency of many

formal systems by means of weaker systems [Gödel 1931], relative consistency proofs are the best we

can aim for in most cases.64 A famous example of such a proof is Gödel’s own result establishing that

if ZF is consistent, then ZFC+GCH is consistent too.65 A point I would also like to emphasize in this

connection is that relative consistency proofs are not limited to formal axiomatizations, as can be seen

from Beltrami and Klein’s interpretations of non-Euclidean geometry (although they might not have

seen their work in this light themselves). While it has been common to show relative consistency by

semantic means, this is not the only possible way. For example, Gentzen and Gödel independently

developed the ‘double negation translation’ between formulas of classical and intuitionistic logic

and showed that a formula is provable in classical logic, if and only if its translation is provable

intuitionistically. As a consequence, a contradiction in one theory also entails a contradiction in the

other.

An important relation between axioms, which is related to consistency, is that of independence.66

An axiom is said to be independent from some other axioms if neither it nor its negation follows

62Since inconsistent theories have no model, the semantic view of theories ([van Fraassen 1980]) considers them all
as equivalent, i. e., it cannot distinguish between Cantor’s inconsistent theory of sets and Frege’s inconsistent theory of
arithmetic. Thus, this approach to theories is not well suited as a basis for discussing the role of theories in mathematical
practice.

63The existence of non-trivial but inconsistent theories has been a motivating factor for the development of paraconsistent
logics, e. g., [Priest et al. 1989].

64See [Sieg 1990] for a discussion of the philosophical implications of relative consistency proofs.
65[Gödel 1940]. ZF stands for the theory defined by the Zermelo-Fraenkel axioms for set theory, while ZFC+GCH is the

theory with the additional axiom of choice and the generalized continuum hypothesis.
66One way to exhibit the independence of an axiom a from a set of axioms S is to show that S is consistent with the

addition of the negation of a. The consistency of S and ¬a implies that a does not follow from S, because if it followed, then
both a and ¬a would be consequences of S and ¬a, i. e., the latter would constitute an inconsistent set of sentences.
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from them. Conversely, a dependent axiom is thus redundant from a deductive point of view and

can be eliminated from the set of axioms without affecting the set of consequences. Considerations

of independence have led to the desire to reduce the number of axioms to a minimum and this has

been an important methodological motivation for many investigations of axiomatic systems (see

Section 4.2). Nonetheless, other aims of axiomatizations, like providing a convenient basis for one’s

theory, providing an interesting systematization of a theory such that certain subtheories can be marked

off easily by removing particular axioms (see Section 4.4), or pedagogical reasons67 can call for giving

up the criterion of independence. Practitioners of axiomatics are well aware of this issue, as we can

see, for example, in the following quote by Tarski:

Often, however, one does not insist on these methodological postulates for practical, didactical
reasons, particularly in cases where the omission of a superfluous axiom or primitive term would
bring about great complications in the construction of the theory. [Tarski 1995 (1936, 132]

This explains Huntington’s remark on the value of independence for mathematical activity as ‘some-

thing of a luxury’ [Huntington 1937, 490].

While consistency and independence can be expressed as syntactic notions, categoricity is a purely

semantic notion. An axiom system is categorical if all of its models are isomorphic, i. e., structurally

indistinguishable. If the aim of an axiomatization is the characterization of a particular structure,

like that of the natural numbers, categoricity is a desideratum, as formulated clearly in Dedekind’s

Was sind und was sollen die Zahlen? [1888]. Formal investigations have revealed that a first-order

axiomatization that has an infinite model cannot be categorical. Second-order logic, which allows

for categorical axiom systems, however, is not complete, i. e., the syntactic and semantic notions of

consequence do not coincide. These results thus point to a trade-off between expressive power and

deductive strength of the underlying logic. The expressive limitations of first-order logic and the

incompleteness of second-order logic have led Bernays to ‘warn against an overestimation’ of formal

axiomatics [Bernays 1967, 188]; for

there seems to be a limit to strict axiomatization in the sense that we either have to admit a certain
degree of imprecision, or to be unable adequately to characterize what we mean, for instance, by
well ordering, continuity, and number series. [Bernays 1967, 191]

In practice, however, such considerations rarely come up explicitly, even in cases where the theory of

numbers is introduced as a ‘deductive science, based on the laws of arithmetic’ [Davenport 2008, 1].

4.4 Character of proofs, definitions, and models

Another popular criterion for axioms is the number and character of their consequences. This is

sometimes referred to as their fertility [Cohen and Nagel 1934, 143; 213–215] or fruitfulness [Carnap

1950, 7]. Since most axiom systems allow the inference of infinitely many theorems,68 it is the quality

rather than the quantity of the consequences that is crucial in evaluating the axiomatization. From

67This is explicitly mentioned in [Pickert 1971, 18].
68Trivially, from an axiom a one can infer the sentences ‘a & a’, ‘a & a & a’, etc.
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a purely logical perspective all theorems stand on equal footing, but in practice some theorems are

considered to be more central to a theory than others (e. g., the ‘fundamental theorems’ of algebra

and arithmetic). Thus, what is usually wanted is an axiom system that provides the basis for a theory

in such a way that the proofs of central theorems or the definitions of central concepts or canonical

objects of the theory are particularly intelligible and explanatory.69 These notions are notoriously

difficult to analyze and cannot be discussed further in this paper. For understanding the practice of

mathematics, however, they are crucial ingredients.

The conciseness of proofs depends on the number and character of axioms and primitives as well

as the number of allowed inferences. The separation between axioms and inferences that is afforded

by an axiomatization (see Section 5.1) brings to light a trade-off between the number of axioms and

the number of inference rules. Simply put, the more inferences we admit, the fewer axioms we need.

Again, the axiomatizations of propositional logic provide a good example. In addition to substitution

rules, Russell and Whitehead, as well as Hilbert and Ackermann, admit only one rule of inference,

namely modus ponens. Their calculi require five and four axioms, respectively. Gentzen’s natural

deduction calculus for classical propositional logic [Gentzen 1935], on the other hand, gets by with

only one axiom (which itself can be easily replaced by an inference rule, as Gentzen noted), but has

two rules (introduction and elimination) for each sentential connective.

In addition to the previously discussed criteria, which are predominantly internal to a particular

theory, the relation of a theory to other areas of mathematics are also often taken into consideration.

According to the two roles of axioms, this relation can again be of a semantic or syntactic nature. The

latter is discussed in Section 5.3.

Intuitively there is an inverse relation between the complexity of the axiomatization and the number

of interesting models: On the one hand, the axioms of the example in Section 2.1 are very few and very

simple, so it should be no surprise that many different models are easy to find for them. On the other

hand, an axiomatization of Euclidean geometry is much more involved, and thus it is more difficult to

come up with different models for it that are of genuine interest independently of the axiomatization.

Notice the qualification: Any consistent theory can in principle have infinitely many models and many

first-order theories even have infinitely many structurally different models. So again, it is not the

absolute number of different models, but rather their specific character that matters in mathematical

practice.

5 What you can do with axioms that you couldn’t do without them

In traditional philosophy of mathematics, which does not pay much attention to history and practice, it

is often taken for granted that theories are presented axiomatically, and no particular importance is

attributed to this fact. To counter this attitude, I shall now address some features that are germane to

axiomatic theories, i. e., that are not to be found in theories that are not presented axiomatically. To be

clear, however, most of these features do not depend on a presentation in a formal language.

69See [Grosholz 2007, Ch. 1 and 2] and [Mancosu 2008b].
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Theories can be given non-axiomatically in several ways. For example, (i) as a set of statements,

e. g., those contained in a series of textbooks, (ii) as the true statements pertaining to their particular

subject matter, e. g., the natural numbers, and (iii) as the judgments of a particular community, e. g.,

the geometers who were contemporaries of Euclid. In the present section, a comparison between

these non-axiomatic ways of presenting theories and axiomatic presentations will make apparent the

usefulness of axiomatics. In particular, I shall take a closer look at the role of axioms for clarifying

the distinction between theory and reasoning, for theory demarcation, i. e., clarifying what belongs

to a theory and what not, for systematization, i. e., clarifying the internal structure of a theory, for

providing means to evaluate theories and determine their meta-theoretical properties, and for promoting

intersubjectivity and clarifying communication.

5.1 Separation of theory and reasoning

The importance of agreement on the admitted inferences has been mentioned several times above and

axiomatics is indeed a vehicle for achieving this goal. The fact that all statements of an axiomatic

theory are encoded in the axioms and that decoding is effected through definitions and the notion of

consequence allows for a clear-cut distinction between the statements of the theory and the inferences

used to connect them. To justify the claim that a particular statement belongs to an axiomatic theory, a

chain of inferences must be exhibited that displays how that statement follows from the axioms. By

requiring these chains of inferences to be made explicit, the single inferential steps (which are not

necessarily formal) are also made explicit as the links between two statements. In this way they are

put out in the open and can themselves be made objects of study.70 In other words, each of these steps

can be examined and it can be discussed whether it is acceptable or not. Of course any two sentences a

and b can be said to be connected by an inference, namely by ‘b follows from a.’ But the point here is

that once such an assertion is made, the question as to whether this inference should be accepted can

then be discussed in public. The infamous debate surrounding the principle of choice, isolated first by

Zermelo, illustrates this observation. Another example is given by Euclid’s first proof in Book I of the

Elements, in which he infers the existence of a point where two constructed circles intersect. This step

is not licensed by contemporary standards of logical reasoning and is thus interpreted as a flaw in the

presentation [Pasch 1882, 45]. Whether Euclid himself would have accepted such a verdict is a matter

of speculation and clearly depends on his own notion of consequence.

Discussions regarding acceptable inferences help in promoting agreement among mathematicians

or at least help in clarifying the points of disagreement. The formulation of formal rules of inference

has made a tremendous contribution towards this goal. However, as has been shown by the debate

between proponents of intuitionistic and classical logic at the beginning of the 20th century, or by the

current disagreement about whether first- or second-order logic is the appropriate formal framework

for modeling mathematical reasoning, a formalization of the admissible rules of inference does not by

itself settle the disputes about their acceptability—but it certainly helps in understanding what these

arguments are about and in investigating the consequences and limitations of the positions involved.

70On more general philosophical reflections about the use of logic to make explicit related facts, see [Brandom 1994].
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Once there is agreement on the admitted inferences (formal or not) further disagreements about

statements of an axiomatic theory must have to do with the axioms. Thus, an axiomatization provides

a kind of localization of problem areas within a theory in a way that other forms of presentation do not.

5.2 Theory demarcation

A system of axioms makes explicit a body of statements in a systematic manner. Because the axioms,

together with an implicit or agreed upon notion of consequence, determine the set of statements that

follow from them, they give a clear, though not necessarily effectively computable criterion as to what

belongs to the theory and what does not. Hence, axioms provide a means for the demarcation of a

theory via the notion of consequence: A statement belongs to the axiomatic theory if and only if it

follows from the axioms of the theory.

If a theory is presented only as an unstructured set of statements, no systematic criterion other

than the inclusion in this set could be given to determine whether a particular statement s is part of the

theory T or not, i. e., all we have is the triviality s ∈ T if and only if s ∈ T, or that x is in T if it follows

from some subset of T , but without any hints about the nature of this subset.

Alternatively, we could appeal to the subject matter that the statements of the theory are intended

to be about to characterize the theory. So, in modern terminology, if M is a particular model of the

theory T , then s ∈ T if and only if s is true in M. The difficulty with this account is that we need

an independent way of accessing M to determine which statements are true in it. For example, it is

one thing to say that arithmetic consists of all true statements about the natural numbers, but it is

another to determine whether a statement belongs to arithmetic or not. For this we have to be able to

decide what can truthfully be said about the natural numbers, which is clearly a difficult task, as is

evidenced by the famous open problems of arithmetic, such as the Goldbach conjecture. Moreover,

it might be a psychological fact that some people believe that the natural numbers are colored,71 but

a statement like ‘the number three is red’, even if it were true, would still not belong to arithmetic.

Thus, appealing to a subject matter, or to models, does not free us from the need of regimenting our

language in a way that is deemed appropriate for mathematics, and we are brought back to the problem

of theory demarcation that we started out with.72 When it comes to more abstract theories the problem

of independently accessing the subject matter only becomes worse. For example, recall the debate

concerning the axioms of set theory in the early 20th century. Here the leading experts could not agree

about which principles were true of sets. The subject matter just did not provide enough substance

to settle the controversy. In fact, the subject matter itself was still in the process of being constituted

properly and early set theorists had only vague intuitions about it.73 The contemporary discussion

about new axioms for set theory is a further case in point.

These debates also illustrate the difficulties involved if a theory is given as the collection of

statements to which a community of experts agrees. In this case the question whether a statement

71See [Galton 1880] and [Seron et al. 1992].
72This issue is closely related to arguments against the semantic view of theories discussed in [Schlimm 2006, 240–243].
73Compare the quotation by Cantor in footnote 37 with von Neumann’s bleak, but precise, conception of sets mediated

through axiomatics expressed in the quotation on page 19.
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belongs to the theory in question can only be answered by asking these experts, which might not

yield a unique answer. Just imagine asking both Hilbert and Brouwer whether the law of excluded

middle belongs to logic or not. Moreover, in case the experts disagree, no independent and objective

criteria are ready at hand for deciding the issue or for making precise the cause of the disagreement. It

was only after Heyting’s axiomatization of intuitionistic logic, which had previously only been given

through not well-understood remarks by Brouwer, that this theory became accessible to the public and

it became possible to articulate and investigate in a precise manner how it differed from classical logic.

The relative consistency proof by Gödel and Gentzen mentioned above followed briefly afterwards.

Agreement about how to determine which statements belong to a theory and which do not can also

be used to identify those notions that are extraneous to the theory. This is sometimes referred to as

ensuring methodological purity.74 The relation between purity of method and the use of axiomatics

was pointed out over a century ago by Bernstein, who maintained that the question of the purity of

certain proofs had been objectivized by the question of whether certain statements can be proved from

certain axioms [Bernstein 1909, 391]. For this reason it is no surprise that an increased attention

to axiomatics went together in the 19th century with the view that mathematical demonstrations, in

particular in arithmetic and analysis, should be independent of intuitions, in particular geometric

ones.75 But geometry itself was also to be developed without recourse to anything not stated explicitly

in the axioms [Pasch 1882], and the distinction between analytic and synthetic geometry reflects

different views on the allowed means for reaching geometric conclusions. Those in the synthetic camp

were often motivated by an ideal of methodological purity that rejects the use of non-geometric notions

in geometry and which has been upheld in some form or other by a large number of mathematicians

throughout the centuries. The axiomatizations of geometry in the 19th century have been interpreted as

a continuation of this ideal [Epple 1997]. Along similar lines, the algebraic geometer Hartshorne has

recently bemoaned the use of real numbers in introductory classes on geometry, which he regards as

belonging to analysis, but not to geometry proper. To retain ‘the pure spirit of geometry’, he suggests

to teach geometry according to Euclid, starting with the first four books of the Elements (presented in

a modernized, rigorous fashion). That the axiomatic approach of Euclid is indeed a crucial ingredient

of Hartshorne’s suggestion to avoid any appeal to real numbers and continuity becomes clear when he

mentions the ease with which other geometries can later be introduced by dropping or adding axioms

[Hartshorne 2000, 464].

5.3 Internal and external systematization

By encoding a theory into a set of axioms a particular logical structure is imposed on the statements

and concepts of the theory, which can then be analyzed further in order to gain insight into the theory

itself. According to Mueller, who argues that Euclid’s aims for mathematics were similar to those that

Socrates had for philosophy, ‘[t]he evolution of the axiomatic method is explicable solely in terms of

74See [Detlefsen and Arana 2011] for a recent discussion. However, here the purity of methods of proof is discussed for
particular theorems, not in relation to systems of axioms.

75See [Frege 1879] and also the discussion in [Stein 1988].
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the desire for clarity and order in geometry’ [Mueller 1969, 293]. To emphasize the latter aspect of

axiomatics, Dedekind speaks of the ‘systematizer,’ whose greatest art lies in the careful and deliberate

formulation of definitions and assumptions for the sake of bringing out the logical connections within

a body of knowledge [Dedekind 1854, 429–430]. Hilbert used the famous phrase of a ‘scaffolding

of concepts’ [Hilbert 1918, 146] to illustrate the systematizing effects of axiomatics. If theories are

presented by a set of statements or a class of models, no such logical structure is automatically imposed

on the statements.

Since axiomatization provides a canonical form in which the assumptions and primitives are listed

explicitly, it facilitates the comparison among axiomatic theories and the discovery of syntactical

similarities. For examples of fertilization across theories in logic, algebra, meta-mathematics, and

topology that are mediated by common axioms see [Schlimm 2009]. In case two theories share

common axioms this leads to a great practical advantage, namely an economy of proof, which makes

the transfer of proofs from one theory to another a matter of routine. After all, once a theorem is

derived from a set of axioms it also holds in other theories in which these same axioms hold.76 It is

important to notice that while the contribution of axiomatics to this kind of theory unification is most

apparent when the axioms are understood abstractly, this is by no means necessary. One can easily

find relations between two axiomatizations based purely on syntactical considerations, i. e., when the

axioms are understood materially. This is evidenced by Aristotle’s remark on the possibility of a single

proof for the law that proportionals alternate for such different domains as numbers, lines, solids, and

durations (Posterior Analytics, I.5; [McKeon 1947, 20]).

Additional layers of systematization of an axiomatic theory can be achieved by grouping particular

axioms and primitives together. This amounts to the formation of subtheories or extensions of a theory

and it allows for obtaining results about the relations between them. A wonderful example is Hilbert’s

Grundlagen der Geometrie [1899]. Here the axioms of geometry are arranged into five groups: Axioms

of incidence (determining the relations between points and lines), of order (about the betweenness

relation of different points on a line), of parallels (determining the number of parallels to a given

line through a given point), of congruence (regarding the congruence relation between line segments,

angles, and triangles), and of continuity (assuring that the axioms are categorical). This grouping has

proved to be particularly fruitful for investigating the assumptions upon which particular theorems

depend — one of Hilbert’s explicit goals [Hilbert 1903, 50]. Imposing this fine-grained hierarchy on

the geometrical theorems enhanced our knowledge about the structure of Euclidean geometry. Indeed,

according to Gray,

Hilbert became attracted to the axiomatic approach earlier than had been thought, and [ . . . ] what
caught his interest was the opportunity to discover new results. The (self-appointed) task of giving
a good starting point to geometry was a chore; the hint of new results was a challenge. [Gray 1992,
235]

76Remarks regarding the economy of proof effected by axiomatics can be found, for example, by [Pasch 1882, 100],
[Enriques 1903, 344], [Dingler 1906, 583], and [Haupt 1929, 39].
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Moreover, Hilbert’s subdivision also allowed for various aspects of Euclidean plane geometry to be

studied separately and certain classes of mathematically interesting models were subsequently found

and studied that satisfy only some of the groups of axioms.77 The grouping of theories on the basis of

their axioms also allows for a unified presentation of hierarchies of theories and models. Huntington

regards axiomatics as ‘a tool for saving mental effort, through the simple device of classifying systems

according to their logical structure’ [Huntington 1937, 486]. Most famously, to provide such an

organization of mathematics has been the explicit aim of the efforts of the Bourbaki group, which

considered the ‘axiomatic method’ as their main tool [Bourbaki 1950].

5.4 Theory evaluation

An axiomatic theory is distinguished from other presentations of theories by the singling out of

particular statements as axioms and of particular terms as primitives. These axioms and primitives not

only determine the theory in question, but they also play a crucial role in its assessment. Following

Quine, the bound variables that are used in quantified statements involving the primitives tell us what

the ontological commitments of a theory are and our belief in the theory can be evaluated through our

beliefs in the axioms. Moreover, properties of the theory can be determined on the basis of the axioms,

in particular meta-theoretic properties (see Section 4.3). In the absence of axioms and primitives the

entire set of terms and statements of a theory must be taken into consideration when the theory is

evaluated, which is, for all practical purposes, clearly an unfeasible task. According to Suppes, the

possibility of directing our attention towards the axioms of a theory is one of the great lessons in

formal logic of the 20th century [Suppes 1979]. A clear example of this is the research program of

‘reverse mathematics’, which aims at investigating which axioms are necessary for proving specific

mathematical theorems [Simpson 1999].

The grounded logical connections among statements of an empirical theory are arguably also

necessary for distributing the blame in case of the falsification of a particular statement78 and for

allowing a theory as a whole to be tested against empirical data. With logical connections alone we

can trace the antecedents of a falsified statement, but the axioms will tell us where to stop.

5.5 Intersubjectivity and pedagogy

All of the features that distinguish axiomatic theories from non-axiomatic presentations discussed above

can be said to facilitate communication. Through its role in the demarcation of theories axiomatics

helps in clarifying what theories are being considered in the first place; and by imposing an internal

structure on the theories the attention of the researchers is focused upon the axioms and primitives.

We have also seen that theories can be rigorously evaluated and compared with each other if they are

presented axiomatically and that this also contributes to the identification and standardization of the

inference processes. Thereby, axiomatics makes communication easier and at the same time it achieves

77This was pointed out to me by John Mumma.
78See [Duhem 1954 (1914] and [Glymour 1980].
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a higher level of objectivity at which controversies can be resolved.79 Let me now add a few words on

how axiomatics facilitates the communication of theories at different levels of discourse.

Once a theory is presented axiomatically and the inferential machinery is agreed upon, the semantic

content of the primitives and statements can be completely neglected. This insight is so fundamental

that it has been called the ‘radicalization of the axiomatic method’ [Sieg 1990, 267]. Hence, axioms

provide a linguistic representation of mathematical content that is independent of philosophical views

regarding mathematical objects. Two mathematicians can agree on certain axioms and derivations

from them, while holding incompatible views about what the primitives refer to. Whether the natural

numbers live in a platonic heaven or only in the minds of mathematicians, whether Galois discovered

or invented mathematical groups, and innumerable other such metaphysical questions, do not affect a

discourse that is based solely on a set of axioms.80 In this sense Bernstein speaks of using axiomatics

to replace the subjective element of the various mathematical schools [Bernstein 1909, 391].

This independence of axiomatics from other views about the subject matter facilitates not only

synchronic communication among contemporaries, but also diachronic ‘communication’ across differ-

ent periods in the history of mathematics. The mathematical content conveyed by Euclid’s axioms is

accessible to us even though we can only speculate about what Euclid’s views were regarding what

he was doing. As discussed in Section 4.1, the views regarding the epistemological status of axioms

have changed considerably over time, but this did not lead in general to the abandonment of previous

mathematical achievements. The effect of axiomatics in retaining older mathematics is in accord with

Kitcher’s account of the cumulative character of mathematics, which he explains as being based on

reinterpreting older theories [Kitcher 1983], and with Weinberg’s analysis regarding the constancy of

the linguistic presentations of ‘great equations’ even in times when their interpretations were radically

changing [Weinberg 2002].

Finally, a further contribution of axiomatics to the development of mathematics is that it provides

clear-cut entry points into the various mathematical disciplines, so that axioms can be used as the

starting point for studying and learning a theory. The development of abstract group theory, for

example, can be traced back to various implicit uses of group-theoretic methods followed by the study

of groups with specific types of elements. The contemporary student, however, does not have to go

through this whole development to learn about group theory: She can start with the axioms and take it

up from there. This also allows for a fresh view on the subject matter that is not bound to tradition,

which, as has been pointed out by Pasch, can be very useful for the development of mathematics:

When a new domain is being developed or a new kind of question is attacked, it often happens
that the view on the consequences of a claim and on unfamiliar details is obstructed; it reveals
itself only to those who approach the object in a fresh manner and free themselves from the spell
of tradition. [Pasch 1914, 137]

79See [Suppes 1968, 654–655] for a formulation of very similar views.
80See also von Neumann’s remark on axiomatic set theory, quoted on page 19. Very similar views with regard to theories

in psychology have been expressed by Hull [1935, 491, 510–511]. These considerations might also be a reason why ‘the
typical working mathematician is a [ . . . ] formalist on Sundays’, according to Davis and Hersh [1981, 321].
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To know what a theory is about can surely also be psychologically advantageous for the beginner, but

this is by no means ruled out by an axiomatic presentation. However, a non-axiomatic presentation

of a theory does not provide anything like the clearly identified entry points into the theory that an

axiomatization does.

6 Conclusion

In the preceding pages I have discussed various dimensions of axioms that play a role in mathematical

activities. In part, the power of axiom systems stems from the possibility of changing our perspective

and using them in different ways. Thus, the same axioms can play semantic or syntactic roles, and

can be intended to be descriptive or prescriptive. Putting forward an axiomatization does not commit

mathematicians to one particular perspective. This becomes especially clear when looking at the

origins of axioms, where a conceptual analysis of one or more domains, reasoning from theorems, and

manipulation of axioms are often all present together. Thus, analyses that argue for one particular role

of axioms81 can only be regarded as idealizations that do not capture the richness of mathematical

practice. Similarly, what I have referred to above as one aspect of the ‘orthodox view’ of axiomatization,

namely that it is a purely cosmetic and expository enterprise, highlights some a particular use of axioms,

but fails to do justice to the creative role that they can play in the development of new mathematics.

I have also discussed various criteria that can be, and have been, employed in assessing a system of

axioms and concluded that there must be trade-offs, because more often than not these criteria stand

in conflict with each other. This is one reason why axiomatizing a theory is not as straightforward a

matter as some would like it to be and why there is no single set of criteria for what makes a good

axiomatization. Nevertheless, there are advantages of axiomatic presentations, like the separation of

theory and reasoning, theory demarcation, internal and external systematization, and intersubjectivity

that cannot be obtained by other forms of presentations of theories. Finally, because of its degree of

explicitness, axiomatics is a vehicle for clarifying a discourse and for reducing verbal ambiguities.

Thus, there are good reasons why axioms are employed in mathematical practice that go well beyond

simply providing a rigorous foundation for a discipline.

Many of the important philosophical issues of mathematical practice have only been touched upon

briefly in this paper, but by providing a general framework for the discussion of axiomatics I hope

to have given a fruitful starting point for further investigations and to have contributed to a better

understanding of mathematics — and thus to a philosophy of mathematics that takes both past and

present practices of mathematics seriously.
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Dedekind, Richard (1854). Über die Einführung neuer Funktionen in der Mathematik. Habilitationsvortrag. In:
Dedekind [1932], pp. 428–438. English translation On the introduction of new functions in mathematics by
William Ewald in Ewald [1996], pp. 754–762. 33

(1888). Was sind und was sollen die Zahlen? Vieweg, Braunschweig. Reprinted in Dedekind [1932],
pp. 335–391. English translation by Wooster W. Beman, revised by William Ewald, in Ewald [1996],
pp. 787–833. 4, 18, 28

38

http://dx.doi.org/10.1007/s11229-010-9837-9


(1890). Letter to Keferstein. Published in Sinaceur [1974], pp. 270–278. English translation in van
Heijenoort [1967], pp. 98–103. 18

(1932). Gesammelte mathematische Werke, volume 3. F. Vieweg & Sohn, Braunschweig. Edited by
Robert Fricke, Emmy Noether, and Öystein Ore. 9, 18, 19, 38
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van Heijenoort, Jean (1967). From Frege to Gödel: A Sourcebook of Mathematical Logic. Cambridge,
Massachusetts: Harvard University Press. 10, 18, 20, 25, 39, 43, 46

Veblen, Oswald (1914). The foundations of geometry. In J. W. A. Young (ed.), Monographs on Topics of Modern
Mathematics Relevant to the Elementary Field. Longmans, Green. Reprinted 1955 by Dover, New York. 23

von Neumann, John (1925). Eine Axiomatisierung der Mengenlehre. Journal für die reine und angewandte Math-
ematik, 154:219–240. Reprinted in von Neumann [1961], pp. 35–56. English translation An axiomatization of
set theory in van Heijenoort [1967], pp. 393–413. 20

(1927). Zur Hilbertschen Beweistheorie. Mathematische Zeitschrift, 26:1–46. 25

(1961). Collected Works, volume 1. Pergamon Press, New York. Edited by A.H. Taub. 46

Weinberg, Steven (2002). Afterword. how great equations survive. In Graham Farmelo (ed.), It Must Be
Beautiful. Great Equations of Modern Science, pp. 253–257. London: Granta Books. 35

46



Weyl, Hermann (1918). Das Kontinuum – Kritische Untersuchung über die Grundlagen der Analysis. Veit,
Leipzig. 47

(1919). Der circulus vitiosus in der heutigen Begründung der Mathematik. Jahresbericht der Deutschen
Mathematiker Vereinigung (JDMV), 28:85–92. English translation by Stephen Pollard and Thomas Bole in
The Continuum, Dover, New York, 1994. 47

(1930). Axiomatik. Notes of lectures held at the University of Göttingen, Winter semester 1930/1, held at
the library of the Institute for Advanced Study. 11

(1935). Emmy Noether. Scripta Mathematica, 3:1–20. 2

(1994 (1918)). The Continuum. A Critical Examination of the Foundation of Analysis. New York: Dover.
English translations by Stephen Pollard and Thomas Bole of Weyl [1918] and Weyl [1919]. 22

Wilder, R. L. (1959). Axiomatics and the development of creative talent. In Leon Henkin, Patrick Suppes, and
Alfred Tarski (eds.), The Axiomatic Method, with Special Reference to Geometry and Physics, pp. 474–488. 2

47



Contents

1 Preliminaries 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The orthodox view and refinements . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Main claims and overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Formal, philosophical, and historical concerns . . . . . . . . . . . . . . . . . . . . . 4

2 The main dimensions of axioms 6
2.1 Some imaginary axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The presentation of axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 The language of axioms: Natural, symbolic, formal . . . . . . . . . . . . . . 8

2.2.2 Implicit and explicit notions of consequence . . . . . . . . . . . . . . . . . . 9

2.3 Semantic and syntactic roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Descriptive and prescriptive axiomatizations . . . . . . . . . . . . . . . . . . . . . . 11

2.5 The imaginary axioms revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Where axioms come from 15
3.1 Reasoning from theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Manipulation of axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Conceptual analysis of one or more domains . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Proofs and refutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 What are good axiom systems? 21
4.1 Narrow philosophical vs. mathematical concerns . . . . . . . . . . . . . . . . . . . 22

4.2 Number of axioms and primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Meta-mathematical properties: Consistency, independence, and categoricity . . . . . 26

4.4 Character of proofs, definitions, and models . . . . . . . . . . . . . . . . . . . . . . 28

5 What you can do with axioms that you couldn’t do without them 29
5.1 Separation of theory and reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Theory demarcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Internal and external systematization . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Theory evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.5 Intersubjectivity and pedagogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Conclusion 36

References 37

48


	Preliminaries
	Motivation
	The orthodox view and refinements
	Main claims and overview
	Formal, philosophical, and historical concerns

	The main dimensions of axioms
	Some imaginary axioms
	The presentation of axioms
	The language of axioms: Natural, symbolic, formal
	Implicit and explicit notions of consequence

	Semantic and syntactic roles
	Descriptive and prescriptive axiomatizations
	The imaginary axioms revisited
	Discussion

	Where axioms come from
	Reasoning from theorems
	Manipulation of axioms
	Conceptual analysis of one or more domains
	Proofs and refutations

	What are good axiom systems?
	Narrow philosophical vs. mathematical concerns
	Number of axioms and primitives
	Meta-mathematical properties: Consistency, independence, and categoricity
	Character of proofs, definitions, and models

	What you can do with axioms that you couldn't do without them
	Separation of theory and reasoning
	Theory demarcation
	Internal and external systematization
	Theory evaluation
	Intersubjectivity and pedagogy

	Conclusion
	References

