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Abstract. This paper is a contribution to the question of how aspects ofscience
have been perceived through history. In particular, I will discuss how the contri-
bution of axiomatics to the development of science and mathematics was viewed
in 20th century philosophy of science and philosophy of mathematics. It will
turn out that in connection with scientific methodology, in particular regarding
its use in the context of discovery, axiomatics has receivedonly very little atten-
tion. This is a rather surprising result, since axiomatizations have been employed
extensively in mathematics, science, and also by the philosophers themselves.

1 Axiomatics

Euclid’s Elementsand Newton’sPrincipia are beyond any doubt among
the most widely known theories in mathematics and in science. They are
crown jewels in the development of geometry and physics. What both
theories have in common is the structure of their presentation, which is
axiomaticor deductive: A number of statements (calledaxioms, postu-
lates, hypotheses, or laws, depending on how their status is conceived)
are posited, and the central claims of the theory (e.g., Pythagoras’ the-
orem, or Kepler’s ‘laws’) are derived as consequences. In addition, all
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notions of the theory are definable in terms of the primitive notions that
occur in the axioms. Henceforth I shall refer to the practiceof develop-
ing, employing, or studying systems of axioms asaxiomatics. Notice that
in axiomatic presentations it is not necessary for the primitive terms to
be considered as uninterpreted symbols, nor must the notionof logical
consequence be made explicit. In the former case we speak of aformal
axiomatization, while the latter distinguishes axiomatizations fromfor-
malizations, which require a formal language and formal rules of infer-
ence. These notions are often conflated in the literature, but they should
be kept apart to avoid unwarranted criticism of axiomatics.

To be sure, neither geometry nor physics ended with Euclid’sand
Newton’s theories. Rather, they have inspired a great number of read-
ers, they have been the starting points of various fruitful developments,
and they have led to a great many new scientific and mathematical in-
sights. These observations lead directly to the main motivation behind the
present paper, namely the question regarding the role that an axiomatic
presentation of theories plays in the development of science and mathe-
matics.1

The usefulness of axiomatics in theory development is manifold. For
example, the formulation of axioms can bring out hidden assumptions,
explicate informal concepts, or reveal gaps in the argumentations; once a
theory is axiomatized it can be studied through the axioms, and relations
to other theories can be established; manipulations of axioms, which can
be motivated by empirical findings that contradict some theorem or by
attempts to prove the independence of the axioms, can suggest new theo-
ries.2 Furthermore, I believe that axiomatics has a considerable effect on
the perception and formulation of analogies, as well as on our capabilities
of reasoning about abstract objects.3

Although the utility of axiomatic presentations should be of no sur-
prise to working mathematicians or theoretical scientists, I shall show
in the present paper that the contribution of axiomatics forthe advance-
ment of science and mathematics has not been properly acknowledged in
the philosophical literature. To do so I shall present an overview of the
main trends in philosophy of science and mathematics with respect to the
following two questions:

1 Notice that I am open as to what theoriesare, as long as they can be presented axiomatically.
2 Non-Euclidean geometries are the most famous outcome of thelatter.
3 A more detailed account of this is planned for the future.
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– How is the change from one theory to another accounted for, i.e.,
what are the mechanisms underlying theory change?

– What role is assigned to axiomatics in particular with regard to theory
change and discovery?

As it turns out, in philosophy of science very little has beensaid in this
regard. On the contrary, the notions of axiomatics and discovery have of-
ten been considered as being opposed to each other. In mathematics there
has been a recognition of the creative power of axiomatics, in particular
by David Hilbert. However, these views did not catch on in philosophy
of mathematics and have been revived only recently.

Before turning our attention to the 20th century, let me briefly men-
tion the major milestones in the history of axiomatics. According to Aris-
totle, scientific knowledge must be demonstrative, restingon “necessary
basic truths” (Post. Ana., I.6, 74.4, [McKeo47, p. 21]). Euclid’s subse-
quent axiomatization of geometry in theElementswas soon considered
to be the prototypical presentation of scientific theory. Ithas inspired
works like Newton’sPrincipia, Spinoza’sEthics, and many many oth-
ers.

Due to the use of axiomatics in the natural sciences, and to the devel-
opment and growing acceptance of non-Euclidean geometries, the idea
that axioms express necessary truths has been slowly abandoned. Also,
starting with the recognition of the point/line duality of projective geom-
etry, the meanings of the primitive terms lost their claim touniqueness.
Frege’s invention of predicate logic led to a sharpening of the language
of scientific presentations, reducing ambiguities and vagueness, as well
as to an increase of rigor in the deductions (see also section3, on related
developments in 19th century mathematics). These developments form
the background for the philosophical reflections in the 20thcentury that
are presented next.

2 Philosophy of science

In the following I shall discuss what I consider to be four major families
of views in the philosophy of science of the 20th century. Dueto space
limitations this can only be very sketchy, but I hope to be able to bring
out the main positions concerning the questions mentioned above. I look
at philosophy of science first, because it has had great impact on the
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discussions in philosophy of mathematics. Hence, the development in
philosophy of mathematics can be better understood when seen in this
broader context.

2.1 The received view

By the received viewin philosophy of science, I will refer to the core
of the views that emerged from logical positivism and were dominant
from the 1930s until the 1960s (see [Salet.al.92, p. 135]).4 One of the
main doctrines of the received view is that theories should be consid-
ered as linguistic entities, formulated in the language of first-order logic.
Empirical meaning is then conferred on the primitive terms by means of
coordinative definitions. As a consequence, the distinction between theo-
retical and observational terms was introduced and the relations between
the two have been studied extensively. Specific views on the assessment
of scientific theories ranged fromverification, overfalsification[Pop34],
to confirmation[Hem45]. A most important distinction, for our purposes,
is made between thecontext of discoveryand that ofjustification[Rei38].
In general, the study of activities related to discovery is relegated to psy-
chology, sociology, and history, but is not considered to beof interest
for philosophy. Kekulé’s dream of a snake biting its own tail, which sug-
gested to him the structure the benzene ring, is seen as the prototypical
example of a discovery about which philosophers could have nothing to
say.

According to the received view scientific progress is explicated as a
succession of theories. It is considered to be cumulative inthe sense that
old theories are replaced by more inclusive ones (e.g., rigid body me-
chanics being replaced by classical particle mechanics), or that theories
are reduced to others (e.g., thermodynamics being reduced to statistical
mechanics). However, more detailed principles providing heuristics for
the development of theories are not investigated, since they are thought
to lie outside of the context of justification.

Although formal axiomatic presentations of theories were used by
philosophers of science adhering to the received view to study properties
of theories, particular axiomatizations were not considered to be of philo-
sophical interest, since they are neither unique for a particular set of state-
ments (since different sets of axioms can determine the sameset of state-

4 Nowadays one can also find the label “once received view” [Cra02].
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ments), nor do they determine unique interpretations. Furthermore, syn-
tactic deductions of theorems from axioms yield only tautologies, while
scientific discoveries express novel facts. Hempel summarizes these con-
siderations as follows: “[A]xiomatization is basically anexpository de-
vice,” which “can come only after a theory has been developed” [Hem70,
p. 250]. Thus, axiomatics was employed for presenting and studying sci-
entific theories (and also for explicating philosophical notions like justi-
fication [Pop34],explanation[HemOpp48], andexistence[Qui48]), but
it was not considered in connection with theory development.

2.2 Reactions: Kuhn and Lakatos

In direct opposition to some of the main tenets of the received view,
Thomas Kuhn published in 1962 what might well be the most influential
book in philosophy of science of the 20th century,The Structure of Sci-
entific Revolutions. In what is commonly referred to as the “historic turn”
in philosophy of science, emphasis shifted from the internal structure of
scientific theories to the actual development of science. Rather than the-
ories, Kuhn considers broader units of scientific progress (paradigms),
which embody the shared, accepted, and unquestioned views,standards,
methods, theories, problems, and goals of the scientists working within
a particular tradition. He distinguishes two phases of scientific develop-
ment: Duringnormal sciencethe scientists work on the solution of puz-
zles guided by the standards and values of the current paradigm. When
a considerable number of such puzzles resist a solution acrisisemerges,
which leads to a proliferation of theories. This crisis is overcome by a
revolutionwhen a new paradigm is finally accepted that leads to the so-
lution of the anomalies.

Since Kuhn considers different paradigms to be incommensurable,
scientific progress, which according to him happens only in the course
of scientific revolutions, is not cumulative.5 Moreover, the scientific
changes that are of interest to Kuhn are broader in scope thanthe move
from one theory to another. Thus, it might not surprise us that his notion
of theory is rather vague, and that he does not ask where the theories
come from. He considers them as “imaginative posits, invented in one
piece for application to nature” [Kuh70a, p. 12].

5 The ideas of incommensurability and cumulative progress need some clarification, but this is
beyond the purpose of this paper.
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Investigation of predictions and determination of values for theoret-
ical constants are regarded by Kuhn as typical problems during normal
science. Similarly, he acknowledges that in the process of matching facts
with theory scientists work on their theories in order to obtain more state-
ments that can be confirmed or disconfirmed directly and to increase
the precision of the predictions. Reformulation of theories in “equiva-
lent but logically and aesthetically more satisfying form,” as well as “to
exhibit the explicit and implicit lessons” of particular paradigms are also
regarded as part of the theoretical work [Kuh70b, p. 33]. This part of
Kuhn’s account of science is very similar to the conception of the re-
ceived view. However, Kuhn does not consider these developments to be
of great value, remarking that “perhaps the most striking feature of the
normal research problems [. . . ] is how little they aim to produce major
novelties, conceptual or phenomenal” [ibid., p. 35]. Kuhn also implies
that the process of codification and axiomatization occurs late in the de-
velopment of a discipline and only in response to a crisis:

It is, I think, particularly in periods of acknowledged crisis that scientists have turned
to philosophical analysis as a device for unlocking the riddles of their field. [. . . ] To the
extent that normal research work can be conducted by using the paradigm as a model,
rules and assumptions need not be made explicit. [Kuh70b, p.88; see also 44–48]

Thus, it seems to me that axiomatics is compatible with Kuhn’s ac-
count of science, but the little he says about it implies thathe did not
regard it as an important factor for scientific development.

Another very influential reconstruction of science was offered by
Imre Lakatos as an advancement of Popper’s falsificationism.6 Accord-
ing to the latter, scientific theories must be empirically falsifiable and
should be rejected when such a falsification occurs. One obvious diffi-
culty with this account is that it does not square well with actual sci-
entific practice, where some theories continue to be pursueddespite the
existence of facts that stand in conflict with them. To overcome this diffi-
culty, Lakatos proposes distinguishing between an irrefutablehard core
and aprotective beltof auxiliary hypotheses, which serve to make predic-
tions and can be adjusted when confronted with contradictory empirical
evidence [Lak70, p. 135]. For example, the hard core of Newton’s grav-
itational theory consists of just his three laws of mechanics and the law

6 Lakatos’s account of science differs in important respectsfrom his views on mathematics,
which are discussed in section 3.3 below.
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of gravitation, while whatever else is needed to apply them is considered
to be part of the protective belt.

Lakatos’s view is similar to Kuhn’s in that it considers broader units
of scientific development than theories. These units, called research pro-
grammes, are successions of theories that share the same hard core. Re-
search programmes are calledprogressivewhen they allow for novel pre-
dictions some of which are confirmed by experience, ordegenerating
when they can only account for empirical evidence in retrospect. Science
evolves by replacing degenerating research programmes by progressive
ones, i.e., by changes of the theoretical hard core of a programme. But
on how these changes come about also Lakatos is silent.

Despite the differences, Kuhn’s account of normal science and Laka-
tos’s progressive research programmes are both similar to the characteri-
zation of scientific progress of the received view. The notion of theory is
more sophisticated in Lakatos than in Kuhn, but, again, the mechanisms
of theory change are not explicated and axiomatics is not assigned any
particular role in this process.

2.3 Discovery and models

By the mid-20th century most of the tenets of the received view had been
challenged. Of particular importance for the present discussion are Nor-
wood R. Hanson and Mary Hesse, who brought the notions of discovery
and analogical reasoning back onto the philosophical table.7

Recall, that according to the received view the origin of theformu-
lation of scientific laws was a subject matter for psychology, sociology,
or history, but not for philosophy. The fundamental scientific inference
was considered to be deduction of data from laws, which served as ex-
planation of the observed phenomena (hypothetico-deductive account,
[HemOpp48]). Hanson criticizes this view for not being justified in re-
jecting the investigation of the origin of scientific laws orhypotheses. He
argues that the inference from data to plausible hypothesesis in fact log-
ical, rather than merely psychological [Han58b]. Rather than just being
lucky guesswork, Hanson considers the suggestion of new hypotheses to

7 I say “back,” because long before modern times, both analogical and deductive reasoning
had been discussed in connection with scientific progress (e.g., by Aristotle and Proclus, see
[Pos89, p. 148] and [HinRem74]).
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be a reasonable affair that goes beyond inductive generalization, and as
such it should be the subject of philosophical reflections.

Peirce’s notion ofabduction, also calledretroduction, is taken over
by Hanson as the logical inference from data to a hypothesis.He ex-
plains the origin of scientific laws by the perception of a particular pat-
tern, which reveals the conceptual framework within which the data can
be systematically organized. Discoveries of scientific laws, according to
Hanson, begin with a problem, difficulty, or surprising empirical factP
that the scientist wants to solve or explain. Her reasoning is thereby di-
rected towards developing a hypothesisH, such that ifH were true,P
would be accounted for [Han58a, p. 1086–7]. Such a hypothesis may be
obtained, for example, from reasoning by analogy [ibid., p. 1078].

Hanson vehemently rejects the hypothetico-deductive (HD)view of
scientific theories, but he also acknowledges that the deduction of con-
sequences from general laws is a crucial ingredient for science. So
he writes, for instance, that we can not determine what counts as an
anomaly, i.e., a deviation from our expectations, “until we have some
fairly full theories whose consequencesconstituteour expectations”
[Han65, p. 52, emphasis in original]. Hanson later obscureshis own ob-
servation by introducing anomalies as conclusions that “although logi-
cally ‘expected,’ are psychologically quite unexpected,”and the aim of
retroduction is to come up with hypotheses that entail the anomaly “as the
‘previous’ theory may not have done” [ibid.]. Presumably, he means that
the new hypotheses and consequences are psychologically more satisfac-
tory. However, in the next paragraph Hanson describes the retroductive
activity of the scientist as seeking “a novel HD framework within which
to reveal the anomaly as logically-to-be-expected” [ibid., p. 53].

Thus, although Hanson appears to be quite hostile towards deductive
methods and does not give credit to the role of logical deductions in sci-
entific progress, he employs them himself for obtaining consequences of
hypotheses. Indeed, it seems to me that both approaches (deductive and
retroductive) should be regarded as complementing each other, and that
in fact scientists often alternate between them when developing theories.
The psychologist Clark Hull, for example, describes theoryconstruction
as a process of recurring cycles of hypothesis formulation and testing of
consequences. When certain facts can not be accounted for, or certain
consequences do not conform to the facts, then the hypotheses have to be
amended [Hul52].
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Generally, one can interpret Hanson as arguing for wideningthe
scope of philosophy of science by demanding a philosophicalinvestiga-
tion of the creative processes behind theory construction.Mary Hesse
pursues a very similar goal in herModels and Analogies in Science
[Hes66]. She distinguishes betweenmaterialandformalmodels; the for-
mer are based on pre-theoretic analogies between two observable do-
mains, while the latter are different interpretations of a formal system.
Hesse argues that material models surpass formal ones in regard to pro-
ducing novelties and justifying scientific predictions. Thus, concerning
the status of models in science, she maintains, against the received view,
the existence of an “essential and objective dependence between an ex-
planatory theory and its model that goes beyond a dispensable and possi-
bly subjective method of discovery” [Hes72, p. 356]. To grant that mate-
rial models are necessary ingredients of scientific theories, however, does
not imply that formal models (and the axioms they are models of) do not
play any significant role.

Let me point out here what I consider to be an unfortunate pattern
in the previous arguments. When new aspects of scientific activity are
introduced into the discussion, the new views are often set in contrast to
other specific views. This is important for highlighting thevalues of the
new approaches, but it also tends to devalue the insights that have been
gained previously. In particular, Hanson and Hesse showed the impor-
tance of retroduction and analogical reasoning for theory construction,
but in doing so they employed much unnecessary rhetoric against the use
deductive methods, which can in fact very easily be seen to complement
their own accounts.

Both this pattern of argumentation and the focus on models are also
characteristic for the fourth trend in philosophy of science I want to
present, namely the semantic view of theories.

2.4 The semantic view of theories

Thesemantic viewof theories is a major trend in philosophy of science,
which also developed in reaction to the received view. Building on work
by Beth and Suppes, its main proponents are van Fraassen, Giere, Suppe,
Sneed, and Stegmüller ([vFra80], [Gie88], [Sup77], [Sne71], [Ste76]).

In a series of papers in the 1960s Patrick Suppes argued for anexten-
sion of the then still current received view of scientific theories. Regard-
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ing theories as an abstract logical calculus in the languageof first-order
logic augmented by coordinating definitions or empirical interpretations
to relate them to the world is too simple a picture, accordingto Suppes
[Sup67]. In particular, he maintains that in practice “formalization [. . . ]
in first-order logic is utterly impractical,” and suggests including models
(understood in the mathematical sense of Tarski, [Tar44]) into the philo-
sophical considerations about science. This, he argues, has the advantage
of being more natural when complex scientific theories are discussed, and
of allowing for a rigorous mathematical (i.e., model theoretic) treatment
of various aspects of scientific practice. Moreover, by studying arithmeti-
cal models of theories one can also obtain insights into the isomorphic
empirical models [Sup67, p. 59].

One of Suppes’s main points is that actual scientific practice is much
more complicated than the simple account of theories suggests: “If some-
one asks, ‘What is a scientific theory?’ it seems to me there isno simple
response to be given” [ibid., p. 63]. In light of the future developments
it should be noted here that Suppes doesnot define theories as a class of
models. Rather, he points out that “the explicit consideration of models
can lead to a more subtle discussion of the nature of a scientific theory”
[ibid., p. 62].

Suppes’s considerations have been taken up by van Fraassen,who
presents his view, called thesemanticapproach, as being opposed to the
“axiomatic and syntactical” analysis of theories [vFra70,p. 326]. In con-
trast to Suppes, who regards semantic and syntactic approaches as com-
plementary, van Fraassen, after initial hesitation, is comfortable of pre-
senting “a view of theories which makes language largely irrelevant to
the subject” [vFra87, p. 108]. He characterizes the contrast between the
syntactic and the semantic view of theories as follows:

The syntactic picture of a theory identifies it with a body of theorems, stated in one
particular language chosen for the expression of that theory. This should be contrasted
with the alternative of presenting a theory in the first instance by identifying a class
of structures as its models. In this second, semantic, approach the language used to
express the theory is neither basic nor unique; the same class of structures could well be
described in radically different ways, each with its own limitations. The models occupy
center stage. [vFra80, p. 44]

The observation that a particular axiomatization of a theory is not
unique had been made already by proponents of the received view. How-
ever, there the conclusion was to not consider particular axiomatizations
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as being philosophically illuminating, while van Fraassendraws the con-
clusion of rejecting a linguistic account of theories altogether.

By pointing to the inadequacies of particular versions of the syntactic
approach, van Fraassen argues indirectly for the semantic picture. How-
ever, van Fraassen’s criticisms may affect particular versions of syntactic
approaches, but by no means the syntactic approach in general, as has
been noted also by Worrall [Wor84, p. 71–73]. The direct argument for
the semantic approach is that it is more faithful to the way scientists ac-
tually talk and write (see also [Gie79]). As an example, van Fraassen dis-
cusses four “axioms of quantum theory,” as they can be found in books
on quantum mechanics, and claims that

they do not look very much like what a logician expects axiomsto look like. [. . . ] To
think that this theory is here presented axiomatically in the sense that Hilbert presented
Euclidean geometry, or Peano arithmetic, in axiomatic form, seems to me simply a
mistake. [vFra80, p. 65]

It is not clear to me what the distinction is that van Fraassenhere alludes
to, but it appears to be a result of conflating axiomatizationwith for-
malization. When discussing the inadequacy of the syntactic approach
he argues against understanding scientific theories as formal deductive
systems in the language of first-order logic. In the above quote, how-
ever, he contrasts his view with an axiomatization in the sense of Hilbert,
which is neither formulated in the language of first-order logic, nor uses
explicitly stated rules of inference. Rather, Hilbert presents the primi-
tive terms as uninterpreted, thereby defining a hierarchically structured
class of models. Quite similarly, van Fraassen considers the axioms of
quantum theory to be “a description of the models of the theory plus a
specification of what the empirical substructures are” [ibid.]. Thus, de-
spite van Fraassen’s claim to the contrary, it seems to me that the prac-
tical differences between axiomatic (e.g., Hilbert [Hil99]) and semantic
approaches are only a matter of emphasis.

In particular, the classes of structures that van Fraassen discusses are
all characterized in terms of a system of axioms that they satisfy. So,
van Fraassen claims to present an alternative to a linguistic account of
theories, but in fact he relies on axioms to determine the class of models
that constitute a theory. In other words, his account makes essential use of
axioms, but he refuses to regard them as part of what he calls ‘theories.’
In addition, he conflates the notion of axiomatization and formalization,
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and has only very little to say regarding heuristic mechanisms for theory
construction and development.

Suppes’s suggestion of employing model theoretic techniques in phi-
losophy of science was also put into practice in Joseph Sneed’s charac-
terization of the development of scientific theories, in particular of math-
ematical physics [Sne71]. Sneed attempts to reconstruct the dynamic as-
pects of theories, i.e., how they grow and change, how they become ac-
cepted and rejected. Hisnonstatementview of theories (also referred to
as structuralistview) rejects the traditional view of theories as sets of
sentences formulated in a first-order language, but identifies theories with
a class of models (the ‘core’) together with an open set of intended ap-
plications. The development of a theory is then characterized by a series
of expansions of the core or by changes in the set of intended applica-
tions, neither of which need result in more inclusive modelsor a greater
number of applications.

Sneed’s account of theory development was put to use by Stegmüller
to explicate the theses put forward in Kuhn’sThe Structure of Scientific
Revolutions. According to Stegmüller, theories develop in time “through
the discovery of new or the rejection of old laws, or the addition of new
constraints” [Ste76, p. 133]. Notice how claims about core extensions,
i.e., about models, are made here in terms of laws or constraints, i.e., in
terms of linguistic entities.

Sneed and, following him, Stegmüller give a logical reconstruction
of theory development and change, but they do not address (other than
in most general terms) how these theory changes come about. In fact,
although rejecting the view that theories are best understood as linguistic
entities, they do speak of models as being determined by axioms and of
changes of models as resulting from changes of axioms. So, Sneed and
Stegmüller’s account tacitly assumes that axiomatizations affect scien-
tific progress, but, just like Kuhn, Lakatos, and van Fraassen, they do not
address this directly.

2.5 Summary

In the received view, theories were understood as sets of sentences, but
they were studied in isolation, as if they were static, so to speak. Ax-
iomatic presentations of theories were used in the study of scientific the-
ories, but very little concern was shown for the actual development of
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theories, nor for the process of discovery in general. Dynamic mech-
anisms underlying theory development or hypothesis formulation were
considered as belonging to the context of discovery and thusas being
outside the scope of philosophical investigations. The turn towards the
historical and dynamic aspects of science, which include processes of
discovery, was accompanied with a move away from theories and lin-
guistic representations. Presumably this was motivated bythe need to
highlight the contrast to the received view. Thus, we can formulate the
two slogans “axiomatic theories without discovery” and “discovery with-
out axiomatic theories” as characterizing the two main directions in 20th
century philosophy of science. The relation between axiomatics and dis-
covery has not been the focus of attention in the mainstream and only
few philosophers paid careful attention to it, most notably, Patrick Sup-
pes. Unfortunately, it seems that Suppes has either been misinterpreted
or neglected.

After this brief recapitulation of 20th century philosophyof science,
let us now repeat this exercise, but this time from the point of view of
philosophy of mathematics.

3 Philosophy of mathematics

Philosophy of mathematics in the 20th century was highly influenced
by late 19th century developments in mathematics. In particular, Frege’s
invention of the language and calculus of predicate logic [Fre79] be-
gan his logicist program of reducing mathematical notions to logical
ones [Fre84], which was then carried through (revealing itsweaknesses)
by Whitehead and Russell in their monumentalPrincipia Mathematica
[WhiRus10–13]. Closely related are the trend of arithmetizing mathe-
matics [Kle95], i.e., developing mathematics without recourse to geo-
metric intuitions, and the emergence of projective and non-Euclidean
geometries, which led to reconsideration and eventual abandonment of
the notion of axioms as self-evident truths. Another very influential de-
velopment was the emergence of set theory in the works of Cantor and
Dedekind (see [Fer99]). Around the turn of the century, however, the
paradoxes discovered by Zermelo, Russell, and others, showed that nei-
ther the prevailing conception of sets, nor Frege’s system of logic pro-
vided an ultimate foundation of mathematics.
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3.1 Early 20th century

In the wake of the developments just mentioned, but not necessarily
causally related to them, two very different approaches to mathematics
emerged: On the one hand, L. E. J. Brouwer, building on Kantian views,
formulated his philosophy ofintuitionism, according to which mathemat-
ics is an “essentially languageless activity” [Bro52, 510]. He considered
language merely as an aid for communication and memory, and formal
logic as restricting mathematical thinking, rather than assisting it. Thus,
Brouwer regarded the relation between axiomatics and mathematical cre-
ativity as a negative one. On the other hand, David Hilbert worked exten-
sively and very successfully on axiomatizations, in particular in geom-
etry and logic, and he actively promoted axiomatizations inother areas
of mathematics and physics (see [Pec90]). In 1917 he referred to the ax-
iomatic method as a “general method of research” [Hil18, p. 405]. For
him, axiomatizing a body of knowledge displays the internalconceptual
connections and provides a fertile soil for further investigations. He re-
garded the aim of axiomatically “deepening the foundations” as a fruit-
ful one for all domains of inquiry. Hilbert saw clearly that axiomatics
plays an important role in mathematical discovery in a number of ways,
only one of which is that it allows rigorous investigations of formal the-
ories themselves, which led to the development of the prosperous disci-
pline of proof theory. In the course of the ensuing debate with Brouwer
and his followers, the so-calledGrundlagenstreit, Hilbert’s position be-
came known asformalism. This is quite unfortunate, since nothing could
be more wrong than saying that Hilbert considered mathematics to con-
sist just of formal manipulations of meaningless symbols (see [Ewa96,
p. 1106]).

3.2 The received tradition

Despite the great influence Hilbert and his Göttingen school exerted upon
mathematics, the mainstream in philosophy of mathematics followed the
views of Frege, Russell, and logical positivism, echoing the development
in philosophy of science.8 Accordingly, mathematics was regarded as a
purely deductive science, and philosophical discussions revolved around

8 In the following I use the termreceived traditionfor these and related views in philosophy of
mathematics.
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the status of mathematical knowledge (analytic, a priori),mathematical
truth (deductivism vs. platonism), the proper foundationsof mathematics
(logic vs. set theory), and the nature of mathematical objects (platonism,
nominalism, neo-logicism, structuralism).

The received tradition considered mathematical discoveryas a largely
irrational process, just as scientific discovery was seen inthe the contem-
porary reflections on science. For mathematics, the paradigmatic exam-
ple of a discovery was Poincaré’s theorem on Fuchsian functions. Ac-
cording to Poincaré’s own account, the theorem popped intohis mind
quite unexpectedly while he was boarding a bus. Hadamard discusses
this and similar examples in hisThe Psychology of Invention in the Math-
ematical Field [Had45] and especially emphasizes the role of uncon-
scious processes in mathematical creativity. Although formulated over
fifty years ago, Hadamard’s views are still popular among mathemati-
cians (see [ChaCon95]).

3.3 New directions

At the time when philosophers of science began formulating alternatives
to the received view, a similar turn towards history and practice took
place also in philosophy of mathematics, albeit on a much smaller scale.
In general, however, the new considerations about science were not car-
ried over to mathematics. Instead, the development in philosophy of sci-
ence seemed to highlight the fact that science and mathematics are en-
tirely different enterprises. Of the philosophers who followed the shift
towards history and practice and who are thus more likely to reflect on
the relation between axiomatics and mathematical progress, I shall dis-
cuss Polya, Lakatos, and Kitcher, and conclude by commenting briefly
on some very recent developments in philosophy of mathematics.

In 1945 the mathematician George Polya initiated almost single-
handedly the turn of philosophy of mathematics towards mathematical
practice. He distinguishes between two sides of mathematics, which re-
sembles the familiar distinction between the contexts of justification and
discovery:

Yes, mathematics has two faces; it is the rigorous science ofEuclid but it is also some-
thing else. Mathematics presented in the Euclidean way appears as a systematic, de-
ductive science; but mathematics in the making appears as anexperimental, inductive
science. [Pol45, p. vii]
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By means of numerous examples Polya investigates the heuristics in-
volved in the invention of mathematics. He is well aware of the novelty of
this presentation and writes that “mathematics ‘in statu nascendi,’ in the
process of being invented, has never before been presented in quite this
manner” [ibid.]. In his 1954 two volume workMathematics and Plau-
sible Inference[Pol54] Polya continues the line of inquiry he began in
1945, distinguishing betweendemonstrativereasoning, by which mathe-
matical results are presented, andplausiblereasoning, which serves “to
distinguish a guess from a guess, a more reasonable guess from a less
reasonable guess” [ibid., p. vi]. According to Polya, the two major forms
of plausible reasoning in mathematics are reasoning by induction and
by analogy. He explicates the notion of analogy in terms of structure
preserving mappings (homomorphisms and isomorphisms) or as being
based on “relations that are governed by the same laws.” An example
that Polya mentions is the analogy between addition and multiplication
of numbers, since they are both commutative, associative, and admit an
inverse relation. On similar grounds, subtraction and division are analo-
gous, as are the roles played by 0 and 1.

In general,systems of objects subject to the same fundamental laws(or axioms) may be
considered as analogous to each other, and this kind of analogy has a completely clear
meaning. [ibid., p. 28; orig. emphasis]

Here Polya points out the importance of axiomatic characterizations of
mathematical notions for finding and formulating analogies, i.e., one of
the fundamental processes of plausible reasoning by which new mathe-
matics is created.

Imre Lakatos explicitly acknowledges “Polya’s revival of mathemat-
ical heuristic and [. . . ] Popper’s critical philosophy” as the background
of his Proofs and Refutations, which is subtitled “The Logic of Mathe-
matical Discovery” [Lak76, p. xii]. Against the received tradition, which
he refers to as thedeductivistview of mathematics Lakatos aims at elab-
orating the point

that informal, quasi-empirical, mathematics does not growthrough a monotonous in-
crease of the number of indubitable established theorems but through the incessant im-
provement of guesses by speculation and criticism, by the logic of proofs and refuta-
tions. [ibid., p. 5]

Accordingly, Lakatos rejects the attempts of establishingultimate foun-
dations of mathematics, and also the traditional notion of proof as formal
derivations.
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Through a careful and detailed analysis of the historical development
of the Euler-conjecture on the relation between the number of vertices,
edges, and faces of polyhedra, Lakatos’s work shows how the content of
mathematical concepts is changed in the process of developing proofs.
He calls the results of this processproof-generated conceptsand shows
that they completely replace the naive concepts with which the mathe-
matical investigations began.

Since Lakatos considers axiomatic theories to be intimately con-
nected to the view of the received tradition, he does not connect his
conclusions to axiomatics, but regards them as being opposed. How-
ever, once we admit that axiomatizations do not have to be static, but
can evolve, it is only a small step to transfer the strategiesthat Lakatos
identifies to axiomatically characterized notions. Thus, against his own
intentions, we can read Lakatos as identifying techniques for reformulat-
ing axioms in the light of failures of proof attempts or counterexamples.
We can therefore infer from Lakatos’s investigations that,by explicitly
stating the assumptions made in arguments, axiomatics contributes to the
development of mathematics.

The publication of Philip Kitcher’sThe Nature of Mathematical
Knowledgehas been hailed as another “event of great importance for
philosophy of mathematics” [Gro85, p. 71]. As the result of adetailed
examination of the history of mathematics Kitcher proposesa naturalist
account, which regards mathematical knowledge asquasi-empiricaland
fallible (see the above quotation by Lakatos). He argues for a close con-
nection between science and mathematics and sees himself asstanding
in what he calls the “maverick tradition” in philosophy of mathematics
that originated with Lakatos [AspKit88, p. 17].

Kitcher regards the historical development of mathematicsas a se-
quence ofpractices, which are individuated by five distinct, but interre-
lated, components: The language in use among mathematicians; the set
of accepted statements; the questions regarded as important; the reason-
ings used to justify accepted statements; and methodological views about
the character of mathematical proof, and the ordering of mathematical
disciplines [Kit83, p. 163]. Mathematical progress is characterized by
Kitcher asrational interpractice transitionsthat aim to maximize the
chances to attain one of the following two epistemological goals: To pro-
vide idealized descriptions allowing us to structure our experience, and
to attain an intellectual understanding of these descriptions themselves
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[Kit88]. As particular activities that yield such rationalinterpractice tran-
sitions Kitcher suggests five patterns of mathematical change: Question-
answering, question-generation, generalization, rigorization, and system-
atization [Kit83, p. 194].

Although one might be able to find ways in which axiomatics is of
use in all five of these patterns, Kitcher discusses axiomatizations only
in relation to systematization. Here he mentions the introduction of new
terms and principles that provide a unified perspective. He distinguishes
between systematization byaxiomatization, where a small number of
principles and definitions are fixed from which previously “scattered”
statements are derived, and systematization byconceptualization, which
“consists in modifying the language to enable statements, questions, and
reasonings which were formerly treated separately to be brought together
under a common formulation” [ibid., p. 221]. To me both kinds of sys-
tematization are aspects of axiomatics, and Kitcher himself seems to con-
flate the terms of his own distinction by discussing the introduction of
the concept of an abstract group as an example of axiomatization. In any
case, in contrast to Lakatos, here the usefulness of axiomatics for mathe-
matical progress is explicitly acknowledged.

In addition to its role in rational interpractice transitions, axiomatics
can also contribute to the cumulative character of mathematics, which,
according to Kitcher, is achieved throughreinterpretationof previous
theories. For example, the discovery of non-Euclidean geometry did not
overthrow Euclidean geometry, but rather it led us to changeour views
about its necessary character and the meanings of the primitive terms.
This move can be explicated by the transition from a particular interpre-
tation of an axiom system to another, or a class of other interpretations.

The considerations of Polya, Lakatos, and Kitcher have recently been
taken up by more and more philosophers of mathematics. Regarding the
interplay between axiomatics and mathematical discovery Iwould like
to draw attention to the collection edited by Grosholz and Breger,The
Growth of Mathematical Knowledge[GroBre00]. Herein, many different
aspects of the development of mathematics are discussed, the traditional
approaches are criticized for not being able to tell an adequate story about
the development of mathematics, and the role of abstractionand axiom-
atization for mathematical progress is emphasized.
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3.4 Summary

The development of philosophy of mathematics that I presented can be
followed in more detail by considering the following anthologies, each
of which contains a number of important contributions reflecting the var-
ious trends discussed. Regarding the early views, van Heijenoort’sFrom
Frege to G̈odel [vHei67] and Ewald’sFrom Kant to Hilbert [Ewa96]
provide many sources; the received tradition is best represented by the
articles in the collectionPhilosophy of Mathematicsby Benacerraf and
Putnam [BenPut83], while articles pertaining to the newer directions can
be found in Tymoczko’sNew Directions in Philosophy of Mathematics
[Tym98]. Aspray and Kitcher’sHistory and Philosophy of Modern Math-
ematics[AspKit88] contains an interesting juxtaposition of contributions
in the received tradition and also following the newer directions. It also
contains an excellent introduction, which presents the development of
philosophy of mathematics from a more general perspective than the
present paper.

From my, admittedly sketchy, overview about what has been said in
philosophy of mathematics regarding the relation between axiomatics
and discovery, the parallels to the developments in 20th century philos-
ophy of science should have become obvious. In both areas thereceived
view and received tradition have dominated the discussionsfor a long
time. They were followed by polarized reactions, mainly antagonistic in
spirit. Regarding the reflections on the interplay between axiomatics and
mathematical progress, we can see a revival of the views firstformulated
by Hilbert in the early decades of the 20th century; a similarmove in
philosophy of science has yet to be made.

4 What’s next?

Returning to the questions posed at the beginning of this paper, it has
now become clear that neither of them has been addressed in a satisfac-
tory manner in 20th century reflections on science and mathematics. In
particular, a systematic study of the role that axiomatics plays in theory
development is still missing.

I have been deliberately vague regarding the term ‘axiomatics,’ be-
cause what I consider to be various aspects of it, namely ‘axiomatic
method,’ ‘symbolization,’ ‘formalization,’ etc., have been understood in a
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number of very different ways in the past. For future discussions on me-
thodology in science and mathematics, a better disentanglement of no-
tions and terminology is sorely needed. Moreover, reflections about what
scientists say and do seem to profit when the approach is less dogmatic in
character, i.e., without the imposition of too strict a priori assumptions.
Clearly some focus is necessary, but this should not be gained by com-
pletely dismissing alternative aspects and approaches. This is related to
what I have found to be an unfortunate recurrent pattern in the discus-
sions, namely that when new points of view are proposed, theyare often
set in stark contrast to some previous position. This is important for high-
lighting the novelty of the new approaches, but also tends todevaluate the
insights gained by the earlier reflections.

After all, “Die Mathematik ist einBUNTESGemisch” [Wit84, p. 176],
and this should be reflected also in the study of and considerations about
the theoretical aspects of science.
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