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Abstract

Three different ways in which systems of axioms can contribute to the discovery

of new notions are presented and they are illustrated by the various ways in which

lattices have been introduced in mathematics by Schröder, Dedekind, Birkhoff,

and others. These historical episodes reveal that the axiomatic method is not

only a way of systematizing our knowledge, but that it can also be used as a

fruitful tool for discovering and introducing new mathematical notions. Looked

at it from this perspective, the creative aspect of axiomatics for mathematical

practice is brought to the fore.

1 Introduction

1.1 On the creative role of axiomatics

It is quite common to regard axiomatic systems only as an aspect of the rigorous

presentation of scientific or mathematical theories, or of the description of certain

domains, but to deny them any role in the creation of new mathematics. This view

is succinctly expressed, for example, in the following remarks by Felix Klein on the

axiomatic treatment of group theory:
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would like to thank the audiences for their valuable comments, in particular Pieter Sjoerd Hasper and
Paola Cantù. Translations are by the author, unless noted.

1



On the creative role of axiomatics Dirk Schlimm

The abstract [axiomatic] formulation is excellently suited for the elaboration of proofs,
but it is clearly not suited for finding new ideas and methods, rather, it constitutes the
end of a previous development. (Klein 1926, 335)

Despite the fact that the importance of axiomatics for advancing mathematics had

been clearly recognized and often emphasized by none other than Klein’s successor

in Göttingen, namely David Hilbert (Hilbert 1918), Klein’s view has remained very

popular among mathematicians and even more so among philosophers.1

Traditional accounts of the use of axiomatics in science and mathematics often

begin with a specific set of objects or a certain domain of being, say D, which an

axiomatic system, say S, is intended to describe and characterize.2 Understood in this

way, axiomatization is the process of finding an adequate S for a given D. However,

Aristotle’s brief remarks about the introduction of a new notion for what numbers,

lines, solids, and times have in common, based on the similarity of certain proofs about

them (Analytica Posteriora 1.5, 74a17–25),3 suggest the following procedure: Take

some domains D1, D2, D3, etc. that are considered to be analogous in some respect

and determine the corresponding axiomatic systems S1, S2, S3, etc.; then, compare

these systems and find a (sub-)system S ′ that they have in common and introduce

a new notion D′ as the domain of being for S ′. Aristotle noticed that a scientific

system S ′ can be used in this way to suggest new notions, objects, or domains. Thus,

axiomatization is not necessarily a one-way process from D to S, but it can also lead one

from S ′ to D′. This insight presupposes neither the notion of a formal system, nor the

possibility of multiple interpretations (although the latter would most likely be our way

of expressing it). Since the domain D′ is more abstract (in the sense of having only a

subset of the properties) than the domains D1, D2, D3, etc., the natural setting for such

introductions of new notions is mathematics, where the objects are inherently abstract.

Indeed, the mathematical notion of magnitude was introduced later to express what the

domains discussed by Aristotle have in common. With a conception of formal systems

at hand, by which I mean systems with primitives that can be interpreted in different

ways, and which emerged in the 19th century, a second, related way of introducing new

domains became possible: Only certain aspects of a single domain D are axiomatized

by a system S, and then a new domain D′, is introduced that is completely determined

by S. As a result, this new domain is more abstract than D itself. Furthermore, an

axiomatic system S does not need to originate from a given domain D at all, but it can

also be obtained through modification from another system of axioms. For example,

1For a more in-depth discussion of this point, see (Schlimm 2006).
2See, for example, (de Jong and Betti 2008).
3For a detailed discussion of this passage, see (Hasper 2006).
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the first axiom systems for non-Euclidean geometry were obtained in this way from

given systems of Euclidean geometry. Only after their consistency was established by

interpreting the primitives in an Euclidean setting the new sets of objects, namely

non-Euclidean points and lines, were introduced. This is a third way of introducing

new domains.

Thus, we have identified three distinct ways in which axiomatics can contribute in

an essential way to the introduction of new notions:

a) By analogy: Properties that different analogous domains have in common are

expressed by a set of axioms, which, in turn, are taken as the definition of a new

and more abstract notion. In other words, one begins with a prior conception of

certain domains being similar and captures this similarity in terms of a common

system of axioms.4 These axioms are then understood as characterizing an abstract

notion that is instantiated by the analogous domains.

b) By abstraction: Specific properties of a given domain are axiomatized and other

domains are identified that also satisfy these axioms. In other words, one starts

here with a particular mathematical domain and describes it axiomatically, thereby

abstracting from all aspects that are deemed irrelevant. This axiomatic character-

ization then guides one to the discovery of other domains that satisfy the axioms

and which are, on this basis, considered analogous.

c) By modification: A given axiomatic system is modified, by adding, deleting, or

changing one or more axioms, and the resulting system is used as the definition

of a new kind of domain.

For the new notions introduced in one of these ways to become accepted as genuine

mathematics, in particular those that arise by modification, their underlying system of

axioms must be considered to be ‘interesting’ in one way or another. We will see in

the historical examples discussed below, that a generally accepted sufficient reason for

investing an axiomatic system with genuine mathematical content is the fact that it

describes a domain that had been investigated previously in its own right. This justifies

considering the axioms as characterizing a new notion and bars the introduction of

notions based on a completely arbitrary set of axioms, since it guarantees a connection

to the current body of mathematics.

In the remainder of this paper I will present and discuss how the notion of lattice

has been introduced independently by Schröder, Dedekind, Birkhoff, and others, as

4On the use of axioms to characterize analogies, see also (Schlimm 2008b).
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examples of these three methods for introducing new domains on the basis of axiomatic

systems, and I conclude that the axiomatic method is not only a way of systematizing

our knowledge of specific domains, but that it can be — and has been — used as a

fruitful tool for discovering and introducing new mathematical notions. Looked at

it from this perspective and taking into account the role of axiomatics in modern

mathematical practice, the creative aspect of axiomatics is brought to the fore.

1.2 The development of lattice theory

A lattice is an algebraic structure that can be defined in terms of two operations ∧
(meet) and ∨ (join) that are commutative, associative, and satisfy the absorption laws

a∧ (a∨ b) = a and a∨ (a∧ b) = a,5 or, equivalently, in terms of a partial order relation

on a domain in which the infimum and supremum of any two elements exist. This

structure is instantiated in many different areas of mathematics, such as logic, set theory,

algebra, geometry, functional analysis, and topology. Important for the development of

lattice theory is their relation to another algebraic structure, namely Boolean algebras,

which can be obtained by adding a complement relation to distributive lattices with 0

and 1 elements.

The history of the emergence of lattices and of the establishment of lattice theory

as a well respected and independent branch of mathematics has been investigated with

great detail by Herbert Mehrtens in Die Entstehung der Verbandstheorie (1979), on

which I rely heavily in this presentation.6 Mehrtens identifies three main sources for

the notion of lattice: The set-theoretic grounding of mathematics, modern algebra, and

the “axiomatic method” (Mehrtens 1979, 292). In respect to the latter, he mentions

two kinds of generalizations by which new notions can be introduced, which correspond

to those referred to above as ‘by analogy’ and ‘by abstraction’ (Mehrtens 1979, 197).

Comparing the various developments that led to the independent introductions of the

notion of lattice in the late 19th century and again in the 1930s, Mehrtens points out

that all of these formations of a new notion resulted from generalizations, but none of

them as part of a solution to some concrete problem.7 Some particular episodes from

the history of lattice theory that reveal the contributions of axiomatics are presented

and discussed below.

5In an axiomatic definition of lattices one can also use idempotency together with the equivalence
(a ∧ b = a)↔ (a ∨ b = a) instead of the absorption laws; see (Birkhoff 1933) and (Klein 1934).

6On the development of Boolean algebra, see also (Serfati 2007).
7This observation contradicts the popular claim that the notions of modern mathematics arose by

necessity in order to solve earlier problems. See also the quotation from Birkhoff at the beginning of
Section 4, and (Schlimm 2008a).
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2 Lattices obtained by modification of a system of

axioms: Schröder’s logical calculus

From early on in his career, Ernst Schröder (1841–1902) showed an interest in formal

calculi and was well aware of the creative power of axiomatics, which he intended to

exploit this in his programme of formal or absolute algebra. He describes the general

study of formal algebraic systems as proceeding in four stages in his textbook on

arithmetic and algebra (1873): First, find all possible assumptions that could be used

for defining an operation in a systematic and sufficient way, with consistency being

the only restriction to be imposed on these assumptions. Second, investigate the

consequences that can be derived from these assumptions. Third, try to find operations

on number systems that are governed by the same laws, and fourth, determine what

other meanings, e. g., geometric or physical, could be given to these operations (Schröder

1873, 233 and 293–296). Four years later he presented an axiomatization of Boolean

algebra as a calculus for classes and propositions, aiming at a minimal number of axioms

and at a formal and rigorous presentation (Schröder 1877). This axiomatization is

based on two operations on classes, + and · (understood as union and intersection,

respectively), and it postulates that classes are closed under these operations, which

are both associative, commutative, and idempotent; furthermore, that for any classes

a, b and c, a = b implies ac = bc and a+ c = b+ c, that they satisfy the distributivity

law a(b + c) = ab + ac, that the universal class (denoted by ‘1’) is the identity with

respect to multiplication, and, finally, that for every class a there exists a complement

a1, such that aa1 = 0 (where ‘0’ denotes the empty class) and a+ a1 = 1. As Mehrtens

comments, Schröder’s investigations are not as rigorous as announced (Mehrtens 1979,

35–36); what is missing for a complete system of axioms for Boolean algebra are the

(implicit) existence requirements for 0 and 1, and the condition that 0 6= 1. Nonetheless,

Schröder is able to deduce from these axioms known theorems for Boolean algebra,

including the absorption laws, and one distributivity law, a+ bc = (a+ b)(a+ c), while

the dual one is taken as an axiom. However, an axiomatic characterization of lattices

cannot be obtained directly by simply removing one or more axioms from this system.

For this, a rearrangement of the system was necessary, which resulted a few years later

after a brief exchange with C. S. Peirce.

Peirce had also investigated Boolean algebras and in his article “On the algebra of

logic” he claimed that the distributivity laws are “easily proved [ . . . ], but the proof is

too tedious to give” (1880, 33). This remark must have caught Schröder’s attention,

since he began to study the independence of the distributive axiom himself. In the course
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of these investigations he split the axiom into the two inequalities a(b+ c) =( ab+ ac,

and ab + ac =( a(b + c), using the symbol =( for subsumption, and he was able to

show that the latter was provable from the remaining axioms, while the former was not.

Schröder refers to Peirce’s claim regarding the provability of the distributive laws in the

first volume of his Vorlesungen über die Algebra der Logik, published in 1890, noting

that “This was a point that needed correction,” and adding that one of the distributive

inequalities was indeed easy and straightforward to prove.

By no means, however, was I able to find a proof for the other part of the theorem.
Instead, I was successful in showing its unprovability [ . . . ]. A correspondence with
Mr. Peirce on this matter clarified the issue, since he also had become aware of his
mistake. (Schröder 1890–1905, I, 290–291)8

To show the independence of the distributive law from the other axioms, Schröder

employed what he called the method of proof “by exemplification” (Schröder 1890–

1905, I, 286), which involves the now familiar presentation of a model in which the

independent axiom is false, but the remaining ones are true. The quest for such a model

led him to reconsider his earlier work on absolute algebra, where he found a suitable

one in his logical calculus with groups (“logischer Kalkul mit Gruppen”). The results

of these developments are presented in Schröder’s lectures on the algebra of logic. In

the first volume of these lectures he introduces an identical calculus with subsets of a

domain (“identischer Kalkul mit Gebieten einer Mannigfaltigkeit”) that is based on the

primitive order relation =( . The basic assumptions for this calculus are:9

Principle I. a =( a.

Principle II. If a =( b and b =( c, then a =( c.

Def. (1). If a =( b and b =( a, then a = b.

Def. (2×). 0 is that subset for which 0 =( a, for every subset a of the domain.

Def. (2+). 1 is that subset for which a =( 1, for every subset a of the domain.

Def. (3×). If c =( a and c =( b, then we say that c =( ab.

Def. (3+). If a =( c and b =( c, then we say that a+ b =( c.

Postulate (1×). 0 is added as the empty subset.

Postulate (1+). 1 is the entire domain.

Postulate (2×). ab is that subset that is common to a and b.

8See also (Peirce 1885, 190) for Peirce’s acknowledgement of Schröder’s correction. For some later
developments, see (Huntington 1904, 300–301) for excerpts from a letter from Peirce to Huntington on
this issue, and the discussion in (Peirce 1960–1966, III, 128) and (Mehrtens 1979, 47–48).

9These can be found on pages 168, 170, 184, 188, 196, 212, 214, 293, 302, and 303 of volume I of
(Schröder 1890–1905); see also (Mehrtens 1979, 43–44).
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Postulate (2+). a+ b is that subset that is formed by a together with b.

Principle III×. If (bc =( 0 and thus) bc = 0, then a(b+ c) =( ab+ ac.

Def. (6). The negation of a subset a is a subset a1, such that aa1 =( 0 and 1 =( a + a1

holds.

Postulate (3). For every subset a there is at least one subset a1, which can be obtained
by omitting a from the entire domain.

With minor changes (mainly of Definition 3× and Principle III×) this system was later

presented by Huntington as an axiomatization of Boolean algebra (1904). Schröder

mentions six different areas of application for this calculus and points out that the

conditions listed above Principle III× constitute a separate area of application, namely

the logical calculus with groups, which is an instance of the modern notion of a lattice

with zero and one elements. Schröder devotes three appendices to his lectures to a

discussion of the logical calculus and he uses algorithms, which he had studied extensively

in earlier publications, to exhibit a model for it. For Schröder, a group is simply a

system that is closed under an operation and an algorithm is a group of formulas of

a particular syntactic form. Of the form in question there are 990 different formulas,

which constitute the universe U , and Schröder defines product and sum on algorithms,

as well as the zero and one algorithm. While arbitrary subsets of U together with union

and intersection form a Boolean algebra, Schröder shows that the distributive law is

not satisfied by the class of algorithms with operations suitably defined, while the laws

from Principle I to Postulate 2+ are. Thus, he concludes that the notion determined by

these postulates is of genuine mathematical interest and that the distributive law is

independent from the other axioms. As Mehrtens emphasizes, it is the fact that this

model has real content, i. e., that algorithms were studied before in their own right,

which makes this independence result so important. Indeed, this is the only case in

which Schröder proves the independence of an axiom, from which Mehrtens concludes

that “this is not just an axiomatic technique, but the demarcation of two structures”

(Mehrtens 1979, 49–50).

The developments after the publication of the first volume of Schröder’s lectures

support the claim that an axiomatic definition of an abstract notion guides the discovery

of other instances, since shortly afterwards other models were suggested for proving the

independence of the distributivity axioms: Classes of natural numbers that are closed

under addition (Lüroth 1891), ideal contents of concepts (Voigt 1892), and Euclidean

and projective geometry (Korselt 1894). These are discussed by Schröder in the second

volume (1905) of his lectures on algebra (Schröder 1890–1905, II, 401–423).10

10See also (Mehrtens 1979, 59).
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To summarize, the emergence of the notion of lattice in Schröder’s work shows how

an axiomatic characterization of a new mathematical notion can have its origin in a

previous axiomatization, from which only a subset of the original axioms is considered.

The particular axiom that led to this subset was brought to Schröder’s attention by

Peirce’s investigations regarding its independence from the other axioms, and Schröder’s

own previous studies suggested to him a particular model for the remaining axioms,

which was of independent interest.11 This model justified him to regard the remaining

axioms as determining a new notion, of which other mathematically interesting instances

were subsequently found.

3 Lattices as abstractions: Dedekind’s Dualgrup-

pen

Richard Dedekind (1831–1916) was highly influential in developing the modern abstract

style of mathematics and many of his results and techniques have become standard:

He introduced such fundamental algebraic notions like field, module, and ideal, he

formulated an axiomatic characterization of the natural numbers, and he gave the

construction of a continuous domain in terms of cuts of rational numbers. What is

perhaps less well-known, is that he also developed — more or less as a by-product of

his work on algebraic number theory and independently of Schröder — the notion of

lattices.

In algebraic number theory Dedekind’s general aim was to transfer notions and

results pertaining to elementary number theory to more general domains of numbers.

Such a programme had begun with Gauss’s investigations of the whole complex numbers

of the form a+ bi (a, b ∈ Z), now called ‘Gaussian integers.’ Kummer had extended this

approach to the cyclotomic integers, solving the difficulty that decomposition into prime

factors is not always unique by the introduction of ideal numbers.12 This background

explains some of Dedekind’s seemingly unusual — for the modern reader — choice of

terminology in algebra, which was deliberately chosen to highlight the analogies to

number theory.13 He published his main contributions to algebraic number theory as

Supplements to the second (1871), third (1879), and fourth (1894) editions of Dirichlet’s

11Notice that many models constructed only for the purpose of showing the independence of certain
axioms, e. g., in (Huntington 1904), are of no further mathematical interest.

12The ring of cyclotomic integers is Z[ζn], where ζn = cos 2π
n + i sin 2π

n is a complex nth root of 1.
The name derives from the fact that the points ζn, ζ2

n, . . . , ζ
n
n are equally spaced around the unit circle.

See (Dedekind 1996 [1877], 3–45) for a historical introduction by Stillwell.
13See, for example, (Dedekind 1996 [1877], 64) and (Dedekind 1930–1932, III, 62).
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Vorlesungen über Zahlentheorie, which Dedekind also edited.14 It is telling for the

depth of his work that Emmy Noether had her students read all versions of these

supplements (Dedekind 1964, Introduction). In the following, the interplay between

Dedekind’s axiomatic approach15 and the emergence of his notion of lattice, which he

called Dualgruppe, is presented.

An important technique for the formation of mathematical notions, which Dedekind

employed as early as 1857, is to consider the set of objects that have a certain property

as a single entity. For example, Dedekind considered congruent numbers and those

numbers that are divisible by one of Kummer’s ideal numbers as single mathematical

objects. Similar considerations in his work on modules led him to the notion of lattice.

When Dedekind first introduced the notions of fields, modules, and ideals in 1871, the

operations on these entities were not part of the definitions themselves. Rather, they

were induced from the underlying domain of numbers. Thus, a module was defined

simply as a system of real or complex numbers that is closed under addition and

subtraction (Dedekind 1930–1932, III, 242). Relations between modules, like being

a divisor and multiple, as well as the notion of greatest common divisor (gcd) and

least common multiple (lcm), were defined in terms of the underlying domain, but no

symbols were introduced for these operations and Dedekind did not investigate them

further. Only six years later, and with some hesitation, Dedekind introduced symbols

for multiple (>), divisor (<), lcm (+), and gcd (−) in (Dedekind 1877, 121). This

allows him to concisely state the following theorems (without proof), for modules a, b,

and c:

(a + b)− (a + c) = a + (b− (a + c)), and

(a− b) + (a− c) = a− (b + (a− c)).

These correspond to what are now called the ‘modular laws’ in the theory of lattices and

they illustrate the need for the introduction of symbolic representations for gcd and lcm

in order to express such general facts. Dedekind also noted that these “characteristic

theorems” display a dualism that holds throughout for the notions of gcd and lcm.

That is, any true formula expressed in terms of + and − can be transformed in

another true formula by switching these symbols. Mehrtens also mentions notes

from Dedekind’s Nachlaß entitled “Über den Dualismus in den Gesetzen der Zahlen

Moduln”16, which reveals his interest for this particular phenomenon. In the 1894

14For a discussion of these works, see (Avigad 2006).
15On Dedekind’s axiomatic approach in his foundational work, see (Sieg and Schlimm 2005).
16(Cod. Ms. Dedekind XI, 1). This manuscript makes references to the second edition of the

Supplements, thus being written before 1879, when the third edition was published.
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version of the Supplements to Dirichlet’s lectures Dedekind speaks of “a peculiar

[eigentümlicher] dualism” (Dedekind 1930–1932, III, 66) between gcd and lcm. He

introduces these operations separately and shows their fundamental properties, i. e.,

commutativity, associativity, and idempotency, for modules a, b, and c (Dedekind

1930–1932, III, 63 and 65):

a + b = b + a, a− b = b− a,

(a + b) + c = a + (b + c), (a− b)− c = a− (b− c),

a + a = a, and a− a = a.

Together with the modular laws, which are proved, the symmetry of these two operations

becomes quite apparent. In a footnote to these considerations Dedekind introduces the

notion of a Modulgruppe:

If one repeatedly generates modules by forming greatest common divisors and least com-
mon multiples, beginning from three arbitrary modules, one obtains a finite Modulgruppe,
which consists in general of 28 different modules. The peculiar laws of this group, which
contains the modules a±b if it contains the modules a and b, shall be discussed elsewhere
[cf. XXX] (Dedekind 1930–1932, III, §169, 66–67)17

The Modulgruppe is also mentioned later in the text in a footnote, where ideals are

introduced as a special kind of modules. Dedekind remarks that the group in question

is reduced to 18 elements, if its elements are ideals rather than modules, which indicates

that he had already studied in some detail the structures induced by the gcd and lcm.

The notion of lattice is finally introduced under the name Dualgruppe in (Dedekind

1897) and studied further in (Dedekind 1900). In the first of these articles, Dedekind

studies systems of numbers in terms of their gcds. This is done in the most general

way possible, he explains, and is to be extended to domains which do not allow for

decomposition into prime factors. Dedekind begins by investigating systems of three

and four numbers, then systems consisting of n general elements, called combinations.

For these he formulates six fundamental laws for the operations of − (the combination

common to two given ones) and + (the combination that contains two given ones),

referred to as “laws A”:

α + β = β + α, α− β = β − α,
(α + β) + γ = α + (β + γ), (α− β)− γ = α− (β − γ),

α + (α− β) = α, α− (α + β) = α.

17The reference XXX is to (Dedekind 1900) and was added by the editors of the Gesammelte Werke.
Note that Dedekind writes a± b for ‘a + b and a− b.’
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Thus, Dedekind identifies commutativity, associativity, and the absorption laws, and he

also notes that the idempotent laws α + α = α and α− α = α follow from them, but

that the distributive laws

(α− β) + (α− γ) = α− (β + γ) and

(α + β)− (α + γ) = α + (β − γ),

although true for the combinations considered, are not deducible from the laws A.

Since Dedekind’s combinations are sets of elements, the operations of + and − can

also be interpreted as union and intersection. Seen in this way, Dedekind remarks,

many of his theorems about combinations correspond to theorems proved in Schröder’s

lectures on the algebra of logic, and he attributes “particular importance” to the fact

that Schröder showed the independence of the distributive laws from the system of laws

A. In fact, he remarks that he had dealt with these questions for many years himself

and that he had also arrived at this result “not without great effort” (Dedekind 1897,

113). In subsequent paragraph Dedekind gives the following definition for the notion of

Dualgruppe:

A system A of things α, β, γ . . . is called a Dualgruppe, if there are two operations ±,
such that they create from two things α, β two things α± β that are also in A and that
satisfy the conditions A. (Dedekind 1897, 113)

To be sure, Dualgruppen are not groups in the modern sense, but lattices. And

although Dedekind himself had studied groups in the 1850s and an axiomatic character-

ization of groups had been published by Dyck in 1882,18 it appears that this term was

not always used in this sense by mathematicians who were not deeply involved with

the theory of groups. For them, including Dedekind and Schröder, a group was simply

a set of elements that is closed under certain operations.19

Immediately after the above definition, Dedekind continues: “In order to show

how multifarious the domains are to which this concept can be applied, I mention the

following examples” (Dedekind 1897, 113), and in addition to the model provided by

Schröder, he describes five other models, namely modules, ideals, the subgroups of a

group, fields, and points of an n-dimensional space. Referring to this list of examples,

Birkhoff, who takes historical accuracy very seriously, remarks that “[t]he abundance of

lattices in mathematics was apparently not realized before Dedekind” (Birkhoff 1940,

16). Thus, in this case the axiomatic definition of an abstract structure goes hand in

hand with the observation that other mathematical domains also satisfy the axioms.

18See (Wussing 1984).
19To avoid confusions arising from this terminology, I shall refer to Dedekind’s notion simply as

Dualgruppen, rather than translating it into English.
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Dedekind not only gives an axiomatization of lattices, but he also develops the theory

further. As already noted, the distributive laws do not hold in general for Dualgruppen,

but they do for the important models from logic and ideal theory. This leads Dedekind

to introduce the subspecies of Dualgruppe vom Idealtypus, i. e., distributive lattices.

The lattice of modules, for which the modular laws hold, is called Dualgruppe vom

Modultypus, accordingly. By exhibiting suitable models, Dedekind is able to show that

these two notions do not coincide, i. e., that the distributive and modular laws are

independent. In “Über die von drei Moduln erzeugte Dualgruppe” (1900) Dedekind

investigates — in modern terms — the free modular lattice with three generators; he

also determines the structure of the lattice generated by three ideals (i. e., the free

distributive lattice with three generators), and he further investigates modular lattices,

proving some fundamental theorems about them.20

Mehrtens notes that in the references to Schröder’s lectures, Dedekind does not

mention that his own notion of Dualgruppe coincides with Schröder’s notion of logical

calculus, and speculates that at this point Dedekind might not have realized that

the same abstract structure underlies his and Schröder’s investigations, but only that

certain similar relations, which are expressed by the underlying axioms, hold between

statements concerning logic and his ideals and modules (Mehrtens 1979, 97). Thus,

if Mehrtens’s analysis is correct, it were the axioms and theorems that brought out

the analogy between Schröder’s and Dedekind’s work, when it was not yet possible

for Dedekind to grasp nor see the abstract structure that is instantiated. Three years

later, however, Dedekind explicitly draws the connection between his Modulgruppen

and Schröder’s identical calculus, and the correspondence between Dualgruppen and

the logical calculus (Dedekind 1900, 252, footnote).

Thus, by 1900 Dedekind had published an axiomatic characterization of lattices,

discussed the main examples, and proved the fundamental theorems concerning modular

lattices; but he did not present this work as the programmatic beginning of a new and

important theory. Although abstract, Dedekind’s notion of Dualgruppe was intimately

tied to that of modules, which he had hoped would play a fundamental role in algebraic

number theory. However, the subsequent development did not follow his lead, as can be

seen from the fact that they do not occur in Weber’s textbook on algebra (1895–1896)

and that they are mentioned only very briefly in Hilbert’s influential Zahlbericht of

1897.21 In contrast to Schröder, whose starting point for the development of the notion

20See, for example, (Burris and Sankappanavar 1981, 12–17).
21For a discussion of the lack of influence of both Schröder’s and Dedekind’s notions of lattices, see

(Mehrtens 1979, 123–126).
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of lattice was an axiomatization of Boolean algebras, Dedekind’s investigations began

as the study of particular instances. The structure generated by the operations of gcd

and lcm on modules gradually emerged in these investigations, and the duality of the

laws governing these operations sparked Dedekind’s interest. He tried to give a minimal

axiomatic characterization and in the study of the dependencies between axioms and

theorems it was especially the independence of the distributive law that caught his

attention. Finally, the publication of Schröder’s lectures provided him with a new

example of an instance of this notion, which motivated Dedekind to publish his own

investigations on these matters,22 and, as soon as the axiom system was formulated,

Dedekind noticed a number of other instances.

4 Lattices as expressing analogies

Schröder’s and Dedekind’s notions of logical calculus and Dualgruppe were not taken

immediately up by their contemporaries. Mathematical practice, however, changed

substantially between the turn of the century and the 1930s. In particular, axiomatics

had developed into a general technique and the use of set-theoretic reasoning had

become commonly accepted. Moreover, by 1930 many algebraic structures had been

studied extensively, and generalizations and abstractions were no longer frowned upon

as they often had been earlier.23 In the wake of these changes the notion of lattice

was rediscovered independently by several authors around the same time. Mehrtens

describes the years between 1930 and 1940 as the formation period of lattice theory,

after which it had become an established mathematical theory. It is characteristic for

this formation period that mathematicians who studied lattices still had to justify their

interest in this notion to their peers. One of the pioneers of lattice theory, Garrett

Birkhoff, reports:

I recall being dashed when my father asked me what, specifically, could I prove using
lattices that could not be proved without them! My lattice-theoretic arguments seemed
to me so much more beautiful, and to bring out so much more vividly the essence of
the considerations involved, that they were obviously the ‘right’ proofs to use. (Birkhoff
1970, 6; quoted from Mehrtens 1979, 176)

A justification for a new notion was usually given in terms of their wide range of

applicability or, if possible, their usefulness for solving problems. In the following I

22Interestingly, also the publications of Dedekind’s work on the foundations of mathematics were
triggered by other publications on the same subject matter; see (Dedekind 1872, 317) and (Dedekind
1888, 335).

23See (Corry 1996) and (Ferreirós 1999) for detailed accounts of these developments.
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shall briefly present how the notion of lattice emerged in the work of Menger, Bennett,

Klein, Ore, and Birkhoff.

4.1 Menger’s unification of geometry

That a projective geometry can be seen as an instance of a lattice had been noted by

several authors (e. g., Korselt 1894), but only for Karl Menger (1902–1985) this was the

main motivation for introducing his notion of Feld, i. e., a lattice with 0 and 1 elements.

He was surprised by the fact that projective and affine geometry,24 although analogous

in many respects, were not presented by similar axiomatizations, and asked: “Since

projective and affine geometry have so much in common, why not base them on two

sets of assumptions that have much in common?” (Menger 1940, 43; translated from

Mehrtens 1979, 132).

Menger’s interest in geometry was sparked by a coincidence. When he was assigned

to teach projective geometry at the beginning of his career as professor in Vienna in

1927, he could not find a satisfying foundation of it in terms of union and intersection,

and so he decided to work one out by himself.25 This resulted in a series of papers

on a new axiomatization of projective geometry (1928), and Menger continued these

investigations together with his students, but they did not arouse much interest outside

of their circle.26 In the course of several years this system of axioms was studied in depth

and more and more refined, and a summary of these efforts was published as “New

foundations for projective and affine geometry” — subtitled “Algebra of geometry” —

in 1936. Menger explicitly motivates his axiomatization of projective geometry, which

is based of a single domain of entities (the linear parts of a space) and two operations

of union and intersection, by the “far-reaching analogy” with abstract algebra and the

algebra of logic that is thereby obtained (Menger 1936, 456). He recalls:

The algebra of numbers has been developed from postulates about adding and multiplying
numbers; the algebra of classes from postulates about joining and intersecting classes.
This suggested a foundation of geometry on postulates about joining and intersecting
flats, and the name ‘algebra of geometry’ for the theory developed. (Menger 1940, 45;
quoted from Mehrtens 1979, 132)

24In projective geometry all lines intersect, points and lines are dual. Affine geometry is a theory
common to Euclidean and several non-Euclidean geometries, which contains the notion of parallelism,
but not that of a metric.

25An interesting historical parallel is Dedekind’s interest in the foundations of analysis, which also
resulted from his teaching duties (Dedekind 1872, 315).

26See also (Mehrtens 1979, 131).

14



On the creative role of axiomatics Dirk Schlimm

In addition, his treatment of geometry differs from the traditional ones in two other

respects, namely that the geometry has an arbitrary finite number of dimensions from

the start, and that affine and projective geometry are developed together as much as

possible. Menger explains:

We first develop [ . . . ] consequences of a system of axioms valid in both affine and in
projective spaces. [ . . . ] From this system of axioms common to both geometries we pass
to either of them. By adjoining the missing dual of one axiom we obtain a completely
self-dual system from which all of projective geometry can be deduced. By adding the
Euclidean parallel axiom we obtain the theory of affine spaces. (Menger 1936, 457)

The possibility of developing great parts of both theories together “could hardly have

been foreseen,” Menger remarks, and he also claims that this has advantages “from the

pedagogic point of view” (Menger 1936, 457). In the concluding paragraph he suggests

further investigations based on his axiomatization:

By varying slightly some of the axioms of our system, new geometry systems might be
obtained. [Footnote: This matter is evidently related to the question of the independence
of our axioms, which is not considered in this paper.] Particularly promising in this
respect is a variation of Axiom ·6 which, as we have seen constitutes the single difference
between projective and affine geometry. (Menger 1936, 481)

Thus, after having introduced his axiomatization based on a perceived analogy between

affine and projective geometry, Menger very clearly expresses here how modifications of

it can lead to new theories and he identifies one axiom from his system which looks

“particularly promising.” In other words, he employs axiomatics not just for unifying

different theories, teaching, and consolidating previous results, but also as a vehicle for

further investigations.

4.2 Bennett’s explication of a commonality of axiom systems

Although Albert Bennett’s (1888–1971) paper on lattices (1930) remained fairly isolated

and consists in not much more than the definition of lattices, it is worth discussing

at this point for two reasons. First, it was presented at the time when other similar

formulations emerged, thus indicating that the rediscovery of the lattice structure was in

the air. Second, he explicitly motivates the introduction of this notion by pointing out

that it captures what is common to various previously studied notions. Thus, also his

axiomatization is intended to clarify an analogy between previously given mathematical

notions.
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Bennett begins his paper by noting that the notion of serial order (i. e., total

order) and the calculus of classes have received a fair amount of attention from the

“postulationists,” in particular by Huntington in (1904) and (1917). He continues:

The two subjects differ considerably but both may be developed by use of a common
symbol, <, of order relation. Some other important systems differing from both show
also an essentially analogous use of a symbol of dyadic order relation [ . . . ]. It appears
therefore worth noting that a body of common relations found in these various basic
mathematical studies has hitherto escaped a common formulation. (Bennett 1930, 418).

Obviously unaware of the earlier work by Peirce and Schröder, Bennett presents an

axiomatization of semi-serial order (partially ordered sets, with suprema and infima).

The axiom system is taken mostly from Huntington, but “by the omission of certain

postulates there given but here extraneous and by introducing VIII an essentially new

system of more extensive application is obtained” (Bennett 1930, 419).27 Clearly, this

is a modification of a given system of axioms.

After presenting his axioms Bennett shows how to define the operations ∨ and ∧
from the order relation and he deduces some basic theorems. The last two of this five

page paper is devoted to a list of 12 mathematical domains that satisfy his system of

axioms: The natural numbers together with ω and the non-negative real numbers with

−1 and +∞, both domains with the usual order relation; the non-negative rational

integers with gcd and lcm; the subclasses of a given class with logical product and

sum; the linear projective subspaces of a given space of n dimensions. In this context

Bennett notices a new connection between logic and geometry, namely that the algebra

of logic applied to a class of n + 1 elements is a special case of Veblen and Young’s

theory of finite geometry of n dimensions with p + 1 points on a line, where p = 1,

and he remarks that “[t]his relationship is however left unnoted by Veblen and Young,

and by Huntington” (Bennett 1930, 422). As further examples Bennett mentions the

set of closed intervals on a line, the set of all convex regions in a plane, the set of all

submodules of a given module, the class of all linear subsets of a given linear set, the

class of all regions in the plane each of which is bounded by a circle, the system of

subgroups of a given group, and the set of idempotent elements in certain algebras of

finite basis, all with appropriate operations.

Thus, this short paper is a great example of the use of axiomatics for capturing

what is common to two given theories and of the fact that other models can be found

with ease once such an axiomatization is formulated.

27The ‘VIII’ refers to Bennett’s list of axioms.
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4.3 Klein’s generalization of algebraic structures

In contrast to Bennett, who apparently wrote only a single paper on lattices, Fritz Klein

(1892–1961) published over a dozen of articles on this topic between the years 1929 and

1939. Initially, influenced by the work of Schröder and his own investigations of logic,

he became interested in abstract operations, i. e., where the nature of the elements

that are operated upon can be disregarded (Klein 1931, 398). In particular, he found

it curious that the distributive laws of logical sum and product are symmetric, while

those for arithmetical addition and multiplication are not (1929). Thus, a negative

analogy caught his attention. Following up on this observation he was led to the axioms

for a distributive lattice, calling the notion an “A-Menge” (1931), and a year later

he introduced the general notion of lattice under the current German term “Verband”

(1932, 117). In this context he also gave examples from number theory, which he had

apparently learned in the meantime from Dedekind’s works. More references to other

models appear in the later publications, and Klein seems to have been encouraged

in his pursuits by realizing that other mathematicians had also independently found

interest in the notion of lattice. Like Bennett, the focus of Klein’s research lies in pure

axiomatics, and the applications merely serve to provide a justification. They do not

appear to guide his investigations in any particular way. According to Mehrtens, Klein’s

studies are detailed but elementary; e. g., he does not discuss the modular laws at all,

but his work is evidence for a change towards a mathematical practice that emphasizes

abstract axiomatic approaches (Mehrtens 1979, 174–175).

4.4 Ore’s programme of structural investigations

A much more influential contribution to lattice theory than that provided by the three

mathematicians discussed above is the work of Oystein Ore (1899–1968). After obtaining

his doctorate in 1924 under Skolem, Ore worked chiefly on algebraic number theory until

the 1930s, focusing in particular on field and ideal theory. Together with Noether and

Fricke he edited Dedekind’s collected works (1930–1932), and by this time his interest

shifted to polynomials in non-commutative rings. His general aim was the transfer of

decomposition theorems from algebraic number theory to non-commutative domains.

These investigations were extended later to include the Jordan-Hölder theorem and

group theory, where his goal became to “base the theory [of groups] as far as possible

directly upon the properties of subgroups and eliminate the elements” (Ore 1937, 149;

translated from Mehrtens 1979, 211). A general discussion of Ore’s contribution to the

structural image of algebra can be found in (Corry 1996, Ch. 6, 263–292). I shall focus
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here on the emergence of the notion of lattice in his works.

Ore was interested in general structural properties of algebraic systems and he

found in lattices, which he called structures, a very fruitful tool for his investigations.

Birkhoff and Mac Lane suggest (in letters to Mehrtens) that Ore developed this notion

independently, despite the fact that his first publication on this subject was after

Birkhoff’s, whom he mentions. His “On the foundation of abstract algebra. I” was

for many mathematicians the first time they heard about the notion of lattice and

it was one of the most often quoted papers on this subject until 1940.28 Ore begins

this paper by rejecting the search for a general notion that encompasses all algebraic

structures, but suggesting instead a different approach to their unification and study,

namely through the investigation of the systems of relations between their sub-domains

in terms of a new notion:

For all these systems there are defined the two operations of union and cross-cut satisfying
the ordinary axioms. This leads naturally to the introduction of new systems, which we
shall call structures, having these two operations. (Ore 1935, 406)

He notes that, on the one hand, this more abstract approach results in a loss of available

mathematical machinery (e. g., residue systems and cosets), but that, on the other hand

“a great deal of simplification and also many new results” are gained by this move (Ore

1935, 407). The importance of new results is also emphasized in a later paper, where he

remarks, in connection with the possibility of presenting known results from different

areas as following from a common unifying notion:

It is of course quite interesting to examine to what extent this is possible, but the real
usefulness of the idea appears through the various new results to which it leads. (Ore
1938, 801, quoted from Corry 1996, 274)

Previous mathematicians had introduced the notion of lattice either in terms of a

partial order relation and then defined the operations of meet and join from it (e. g.,

Bennett), or vice versa (e. g., Menger and Klein). Ore shows that these axiomatizations

are in fact equivalent (Ore 1935, 409).29 I have pointed out in connection with Bennett,

that until 1930 the notion of order had almost exclusively been understood as linear

(total) order. As such it had been investigated axiomatically by Huntington and Veblen.

Hausdorff had introduced the notion of partially ordered set in 1914, but omitted it from

the revised second edition of his textbook in 1927, since it was of no further importance

for his work. It is chiefly with Ore’s axiomatic presentation of a “partly ordered set” and

28Birkhoff’s textbook Lattice Theory was published in 1940. His early publications on lattices were
in lesser-known journals.

29Equivalence is meant here in the sense of mutual interpretability.
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the relevance of partial orderings in connection with lattices that this notion became

more prominent in mathematics.30 At this point an interesting observation can be

made regarding the difference between how mathematics is perceived and presented in

retrospect and how it actually develops. Birkhoff tells us the following story:

It is often said that mathematics is a language. If so, group theory provides the proper
vocabulary for discussing symmetry. In the same way, lattice theory provides the proper
vocabulary for discussing order, and especially systems which are in any sense hierarchies.
(Birkhoff 1938, 793; translated from Mehrtens 1979, 314)

As we have seen, this logic internal to mathematics does not reflect the historical

development of the theory, in which the study of orderings played only a marginal role.

To conclude, Ore’s notion of lattice is intended as a tool for generalizing and

investigating algebraic structures. Thus, his way of arriving at lattices is, like Dedekind’s,

by abstraction. This becomes clear from the fact that his main justification for the new

notion is that it allows to recapture important algebraic decomposition theorems and

that he does not mention any models from areas of mathematics other than algebra.

As Mehrtens points out, this is not enough to form the basis for an independent theory

(Mehrtens 1979, 186). Such a basis was developed by Garrett Birkhoff.

4.5 Birkhoff’s consolidation of lattice theory

When Garrett Birkhoff (1911–1996) was born, his father, G. D. Birkhoff, was one of

the leading American mathematicians. Garrett received his B. A. in 1932, then went to

England to study group theory, and soon thereafter published his first work of lattice

theory (1933). As his main influences Birkhoff mentions the group theorist Remak

and the algebraist van der Waerden.31 The latter’s 1930 book Moderne Algebra, based

on lectures by Artin and Noether, was the first and highly influential, cohesive, and

abstract presentation of algebraic structures. In the preface its aim is described as

an introduction to a “whole world” of algebraic concepts, and the creative role of

axiomatics is acknowledged:

The recent expansion of algebra far beyond its former bounds is mainly due to the
“abstract,” “formal,” or “axiomatic” school. This school has created a number of novel
concepts, revealed hitherto unknown interrelations and led to far-reaching results, espe-
cially in the theories of fields and ideals, of groups, and hypercomplex numbers. (van der
Waerden 1930; quoted from the translation of the second edition, xi)

30(Ore 1935, 408). Ore refers to Hausdorff for the terminology; see also (Mehrtens 1979, 187).
31In a letter to Mehrtens (Mehrtens 1979, 159).
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General notions, like those of structure-preserving mappings and equivalence relations,

are introduced set-theoretically in the first chapter, and then they are applied in the

study of groups, rings, fields, etc., which are introduced axiomatically. Through this

book Birkhoff became acquainted with a variety of different algebraic structures, while

Remak’s work showed him the importance of the study of substructures.

Remak investigated unique decomposition of finite groups and the representation

of finite groups as subgroups of direct products. Particular aspects of his work are

the use of the structure of the normal subgroups of a group and the investigation

of the subgroups of direct products with three factors (1932). Mehrtens speculates

that Birkhoff may have begun his investigation of the subgroup generated from three

normal subgroups by repeatedly forming direct products in connection with his studies

of Remak’s works. This structure corresponds to the free modular lattice generated

by three elements and is the same that Dedekind had investigated more than three

decades earlier. It plays a prominent role in Birkhoff’s first paper on lattice theory

(1933), where he repeats many of Dedekind’s results, but also presents new material;32

e. g., that a lattice generated in this way by four elements (called “free”) is in general

infinite and that every distributive lattice can be represented by a ring of sets.33 He

also discusses modular and distributive lattices, and applications to group theory, ideal

theory, and geometry. These applications are elaborated in later papers, where further

ones are added, e. g., set theory, measure and probability theory, equivalence relations,

and topology.

The work of Garrett Birkhoff was instrumental for establishing lattice theory as an

independent and generally accepted mathematical theory. Not only did he introduce

the now common English term “lattice” in 1933 and wrote the first monograph on

this subject in 1940, but he also developed the theory in great depth and he was able

to integrate the work of other mathematicians into one coherent whole. Bennett and

Klein showed that many algebraic structures can be studied as lattices, Menger and

Ore showed the relation of lattice theory to the foundations of geometry and to the

decomposition theorems in algebra, but Birkhoff is the one who really emphasized the

32Birkhoff had been made aware of Dedekind’s work by Ore, and he discusses the relation to his own
work in (Birkhoff 1934). He recalls: “Not knowing of Dedekind’s previous work, I felt that my results
partly justified my claims” (Birkhoff 1970, 6; quoted from Mehrtens 1979, 176). Later, he remarks:
“I admired the style and the power of the master, and was glad that he had not anticipated more of
my work” (Letter to Mehrtens, quoted from Mehrtens 1979, 178). Mehrtens points out the striking
similarities between Birkhoff’s and Dedekind’s approach; he remarks that Dedekind introduced his
Dualgruppen when he was already retired, while Birkhoff developed his notion of lattice when he was
only 22 years old: The knowledge that Dedekind had accumulated during his life had in the meantime
become general knowledge in the community of algebraists (Mehrtens 1979, 179).

33A ring of sets is a family of sets that are closed under finite union and intersection.
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notion of lattice as being of central importance to many mathematical fields. In the

opening lecture of the 1938 spring meeting of the American Mathematical Society he

introduced lattice theory as a “vigorous and promising younger brother of group theory”

and argued emphatically that some familiarity with it “is an essential preliminary to

the full understanding of logic, set theory, probability, functional analysis, projective

geometry, the decomposition theorems of abstract algebra, and many other branches of

mathematics” (Birkhoff 1938, 793; quoted from Mehrtens 1979, 284).34

5 Conclusion

In all the investigations discussed in this paper, axiomatics has been a key methodological

and creative tool for mathematical discovery. We have seen that the abstract notion that

is today called ‘lattice’ was developed independently by Ernst Schröder and Richard

Dedekind in the late 19th century. Schröder was led by considerations regarding the

independence of the distributive axioms to a meaningful instance of a lattice, which in

turn justified his isolation of a subset of the axioms of Boolean algebras. For Dedekind,

the structures induced by the operations of gcd and lcm on modules were the instances

of lattices that motivated his axiomatic characterization, and, once the notion was

presented axiomatically, he quickly found further instances from many different areas

of mathematics. However, their notions were not taken up by their contemporaries and

thus lay dormant for the next decades, but by the 1930s a number of developments had

taken place in mathematics that facilitated the development and spreading of abstract

notions. In particular, a general acceptance of set-theoretic and axiomatic reasoning,

and of the study of abstract structures in their own right. In this context the notion of

lattice reemerged in the quest for unifying notions in the independent work of younger

mathematicians (Klein, Bennett, Menger, Ore, and Birkhoff).35 Indeed, its unifying

power is now, in retrospect, regarded as one of the most important virtues.36 Within a

decade this research had been consolidated and lattice theory had been established as

an independent and branch of mathematics, which is marked by the publication of the

first textbook on lattice theory by Birkhoff (1940). These developments surrounding the

emergence of the notion of lattice were intimately connected to the use of axiomatics. In

particular, they illustrate the three different ways I have identified in the Introduction by

34Similar remarks can be found in the preface to the second edition of Lattice theory (Birkhoff 1940;
second ed., 1948, iii–iv).

35Of possible interest is also (Skolem 1936), but I was not able to access this paper; see its review
(Birkhoff 1937).

36See, for example, (Birkhoff 1970, 1).
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which axiom systems can contribute to the introduction of new notions: by modification,

by abstraction, and by analogy. Thus, the creative aspect of axiomatics is an essential

ingredient of mathematical practice.
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of ideals. In José Ferreirós and Jeremy Gray, editors, The Architecture of Modern Mathematics,
pages 159–186. Oxford University Press, 2006.

(Bennett 1930) Albert A. Bennett. Semi-serial order. American Mathematical Monthly, 37(8):418–423,
Oct. 1930.

(Birkhoff 1933) Garrett Birkhoff. On the combination of subalgebras. Proceedings of the Cambridge
Philosophical Society, 29:441–464, 1933.

(Birkhoff 1934) Garrett Birkhoff. Note on the paper “On the combination of subalgebras”. Proceedings
of the Cambridge Philosophical Society, 30:200, 1934.

(Birkhoff 1937) Garrett Birkhoff. Review of Thoralf Skolem, ‘Über gewisse “Verbände” oder “lattices”’
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pages 145–169. Leo S. Olschki, 2007.

(Sieg and Schlimm 2005) Wilfried Sieg and Dirk Schlimm. Dedekind’s analysis of number: Systems
and axioms. Synthese, 147(1):121–170, Oct. 2005.
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