Below are some proofs in predicate logic and some examples of how to show a statement is invalid with a model.

(x)~Kx, (x)(~Kx→~Sx) ├ (x)(Hx v ~Sx)
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 (x)(Gx → ~Fx), (x)(~Fx → ~Hx) ├ (x)(Gx → ~Hx)
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((x)~(Cx v ~ Rx) ├ ((x)~Cx
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2, DeMorgan’s law
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(xFx→(xGx ├ (x)(Fx→Gx)
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(P→ ~(xFx)├ ~(x(P & Fx)
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(x(P v Fx) ├ ~P→(xFx
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~P→(xFx ├ (x(P v Fx)
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Note: To show a sequent is invalid, one needs to find an interpretation where the interpretation makes the premises true but the conclusion false. 

(x)Fx ├ Fm
Let:  
U = N

Fx = x is odd


m = 4

Under this interpretation, ((x)Fx is true (for example 3 satisfies it), but Fm is false, since 4 is not odd. Therefore, this interpretation shows that the sequent is invalid.  

(x)(Fx→Gx), (x)(Hx→Gx) ├ ((x)(Hx & Fx)

Let:
U = N


Fx = x < 5


Hx = 5 < x < 10


Gx = x < 10

Under this interpretation, clearly, (x)(Fx → Gx) and (x)(Hx → Gx) are true, since, for all x, if x is less than 5, its obviously less than 10 and for all x greater than 5 and less than 10, it is true that x is also less than 10.  But, there is no x, such that x is both 5<x<10 and x<5, hence ((x)(Hx & Fx) is false under this interpretation.  So, we have found an interpretation that makes (x)(Fx → Gx) and (x)(Hx → Gx) true, but ((x)(Hx & Gx) false, in other words we have shown that the sequent is invalid. 

(x)((y)~Lxy ├ (x)~Lxx
Let:
U = N


Lxy = x is equal to y

With this interpretation, it is obvious that (x)((y)~Lxy is true, since, for any x, there is a y (say let y =x+1) such that x is not equal to y.  But, (x)~Lxx is false, since (x)~Lxx is equalivent to ~((x)Lxx and we know that there is a natural number (all of them in fact) such that x=x, other words we know that ((x)Lxx is true, so (x)~Lxx must be false. Thus, with this interpretation the sequent is shown to be invalid. 

