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1. David Hilbert on the solvability in principle of every

mathematical question

David Hilbert (1862–1943) was one of the most prominent mathe-
maticians of the late 19th and early 20th century.

In 1900 Hilbert proposed his famous 23 problems in Paris, where he
avowed to the conviction “that every definite mathematical problem
must necessarily be susceptible of an exact settlement.” This is a con-
viction, he said, “which every mathematician shares, although it has
not yet been supported by proof.” And, more definite: “in mathemat-
ics there is no ignorabimus.”

However, 1918 he declared the solvability in principle of every math-
ematical question as a “difficult epistemological question” which is re-
lated to the question of the consistency of the integers and of sets, and
which should be carefully investigated.

In Hilbert’s biography we read: “In addition, two other motives
were in opposition to each other—both strong tendencies in Hilbert’s
way of thinking. On one side, he was convinced of the soundness of
existing mathematics; on the other side, he had—philosophically—a
strong scepticism.”

“The problem of Hilbert,” Bernays [Hilbert’s assistant and collabo-
rator] explains, “was to bring together these opposing tendencies, and
he thought that he could do this through the method of formalizing
mathematics.” ([Reid 1970], p. 174.)

Later, in 1930, Hilbert emphatically claimed:

“there are absolutely no unsolvable problems. [ . . . ]
We must know, we shall know.”

2. Kurt Gödel (1906–1978)

The following is a direct quotation from the beginning of Gödel’s
famous essay.
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“ON FORMALLY UNDECIDABLE PROPOSITIONS OF
PRINCIPIA MATHEMATICA AND RELATED

SYSTEMS I
(1931)

I
The development of mathematics toward greater precision

has led, as is well known, to the formalization of large tracts
of it, so that one can prove any theorem using nothing but a
few mechanical rules. The most comprehensive formal sys-
tems that have been set up hitherto are the system of Prin-
cipia Mathematica (PM) on the one hand and the Zermelo-
Fraenkel axiom system of set theory (further developed by
J. von Neumann) on the other. These two systems are so
comprehensive that in them all methods of proof today used
in mathematics are formalized, that is, reduced to a few ax-
ioms and rules of inference. One might therefore conjecture
that these axioms and rules of inference are sufficient to de-
cide any mathematical question that can at all be formally
expressed in these systems. It will be shown below that this
is not the case, that on the contrary there are in the two
systems mentioned relatively simple problems in the theory
of integers that cannot be decided on the basis of the axioms.
This situation is not in any way due to the special nature of
the systems that have been set up but holds for a wide class
of formal systems; among these, in particular, are all systems
that result from the two just mentioned through the addition
of a finite number of axioms, provided no false propositions
of the kind specified in footnote 4 become provable owing to
the added axioms.”

3. Gödel’s incompleteness theorems

‘PA’ stands for ‘Peano arithmetic’, i.e., the theory of the natural
numbers based on the axioms of Dedekind (1888) and Peano (1889).

• Gödel’s first incompleteness theorem: If PA is consistent,
then there are arithmetical statements γ such that neither γ nor
¬γ is provable in PA; i.e. PA is incomplete.

• Gödel’s second incompleteness theorem: If PA is consistent,
then it cannot prove its own consistency, i.e., PA 6` ConsPA.


