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Lecture 1. Introduction

Lecturer: Red Schoof Scribe: Anne Broadbent

“The kind of computer science we do, we like to call math.
Rere will be showing us some real mathematics.”
— Denis Thkrien

1.1 Introduction

The topic of these lectures are applications of elliptiovesr The main applications we will see
are:

1. factoring integers
2. primality testing
3. discrete logarithm

Scribe notesRere Schoof will give five morning lectures, each approximatlyours each.
Late afternoon lectures last approximately 1.5 hours aticoeigiven by different speakers each
day.

1.2 Factoring, primality testing and “p — 1” algorithms

Factoring is the jungle
— Rer@ Schoof

The Rabin-Miller algorithm is a very efficient “probable” primality test. Alpgd ton € Z ,
it can give two answers:

1. nis not prime
2. n could be prime.

In case 1, the answer is guaranteed to be correct and so wetkabwis not prime. Case 2,
is not so favourable, and all we can do is repeat the test tease our confidence level (if the test
always passes, we conclude thas “very likely” a prime). This of course, does not give a piroo
of primality.

Depending on the situation, we can ask the following quastio

1. If nis not prime, what are its factors?



2. If n “very likely” prime, can we have a proof of primality?

Note: There exists a deterministic polynomial time prinyaiest by Agrawal, Kayal and Sax-
ena.

Let p be prime, thep — 1 = #(Z/pZ)* is theorder of Z mod p. We will also writeZ/pZ =
IF,; itis a finite cyclic group.

Proposition 1. Let A be a finite multiplicative Abelian group of order(#A =n). Then:
1.Vae A,a" =1
2. Ya € A, ord(a) dividesn.

1.2.1 p— 1 factoring
Algorithm 1 is due to Pollard and goes back to the '70ies.

Algorithm 1 p — 1 factoring
input: n € Z-, to be factored
output: non-trivial factor ofn, or L

1. Choose a boun# which will determine the time spent running the algorithm
2. Pick arandom: € (Z/pZ)* with ged(x,n) = 1 (use Euclidean algorithm to test this)

3. Let M be the product of all prime powers smaller than

M= 1] « (1.)

whereq is prime and;*? is the largest power of that is less thar3. By a version of the
prime number theorem\/ ~ exp(B)

4. Computezed(z™ — 1,n) = m by first computingz? (mod n) using modular exponentia-
tion

5. If m # 1, outputm, otherwise output_

The work required for the modular exponentiation i€ log” n), while the rest of step 4 is
in O(log® n). The total work of algorithm 1 is i) (B)..

We now havescd(X* —1,n), which obviously divides.. Let's see under which circumstances
this algorithm gives us something useful.

If ged(XM —1,n) # 1, itis divisible by a primep|n

2™ —1=0 (mod p) (1.2)
2™ =1 (modp). (1.3)



By Proposition 1z7~! = 1 (mod p) (Fermat's little theorem).

=1 (mod p) (1.4)
<p — 1 dividesM (1.5)
<p — 1is B-smooth (1.6)

Where the before-last equivalence is “not exactly an egemnad, but true in practice”. Note that
we say thap — 1 is B-smoothif all primes dividingp — 1 are less thamis.
Hence we have success in algorithm & i divisible by a primep with the property thap — 1
is B-smooth. The problem is that in practice, if you want to faetpyou do not knowp, and you
do not know for whichB, the numbep — 1 is B-smooth! The worst case arises wheg:= pg with
p,q ~ /n, andp — 1 not smooth for any3, i.e.p — 1 = 2r for r prime,r ~ % n. The total work
in this case is iMO(B) € O(4/r). The naive factoring algorithm runs in the same time, henee w
haven’t done much better.

We can formally analyze the probability that this algoritknti work, and conclude that the
algorithm almost never works!



1.2.2 p — 1 primality test (Pocklington 1916)

We now describe an algorithm for primality testing, it is @d®n a proposition:

Proposition 2. Letn — 1 = QR. If for every primeq|Q there exists: € (Z/nZ)* with a® = 1
(mod n) andgcd(a%—l, n) = 1, then any prime divisgy of n satisfiep = 1 (mod Q) (including
p > Q). In particular, if @ > \/n, we have that is prime.

Proof. Let ¢ be a prime divisor of), with ¢ the exact power aof dividing Q.

Claim: b = ai™ ¢ (Z/pZ)* has order™. This is becaus&’” = a? = 1 (mod n), so the
order ofb dividesq™. Now, b?" ' = at in (Z/nZ)*. We also know that?” = 1in (Z/pZ)*, so
" = a7 in (Z/pZ)".

Couldp?™ " = 1? If so, we have ” = 1 (mod p). Sincep\(a% —1),p| gcd(a% —1,n) is not
true. So the claim is true also {iZ/pZ)*.

Hence:
q"|#(Z/pZ)" =p—1 (1.7)
p=1 (mod ¢™)Vq (1.8)
p=1 (mod Q) O

Scribe notesin what follows, the speaker’s original presentation hesrbmodified to highlight
the algorithm and its properties.

Algorithm 2 p — 1 primality test
input: n € Z-o (supposer passes the Miller-Rabin test)
output: “n is prime” or L

1. Using computational resources available, find all snraihe factors ofn — 1. Let () be the
product of these primes. Let— 1 = QR (we call R thecofactol).

2. Now, three things can happen

(@) (almost never)) > /n. For each prime|Q (suppose we already have a proof of pri-
mality for ¢, if need be, call algorithm 2 recursively!), we need to fincbaresponding
a as in proposition 2. Pick at random inZ/nZ. Check thatz? = 1 (mod n), and

thatgcd(a% —1,n) = 1. If all tests succeed, output'is prime”.
(b) (usually)R not prime but cannot factor within reasonable time. Give g @utput L.

(c) (occasionallyyy — 1 = QR, with Q@ < /n andR > /n passes the Miller-Rabin test.
Reverse the roles @ and R, at which point we fall back into case (a).

The goal of algorithm 2 is to check that the conditions of @®flon 2 are satisfied, with
Q@ > /n. ltis clear that this is what is accomplished and that thewaf the algorithm is correct.
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What about the choice af in step (a)? Ifn is prime, then(Z/nZ)* is cyclic, suppose it is
generated by. Takea = g%. Thena® = ¢#? = ¢! =1 (mod n) (Fermat's little theorem),
andgcd(a% —1,n) = 1 because if not@% = g% =1 (mod n), which cannot happen. Sorif
is prime, our method of picking at random should give good results.

How about the complexity of the algorithm? Computiafé) (mod n) (modular exponentia-
tion) requires work ir0O(log® n). Theged computation is also polynomial.

But will it work? In practice, because of (a), (b) and (c), wenitanake much progress. For
instance, taking. ~ 10'°% gives a probability of success that is low.

1.3 Elliptic Curves

Elliptic curves are an “old” subject— much older than congrat Our study is motivated by
algorithmic applications. In the previous section, we saw — 1 algorithms:

e factoring: Success if there existgn such thap — 1 is B-smooth.

e primality: Success i) — 1 = QR where the factored paf} is > \/n orp — 1 = QR where
the factored parf) < \/n andR is a probable prime.

These algorithms have in common the fact that they use gitoegretic statements, but they need
to be lucky to actually work.

Now, our key idea will be to replac€Z/pZ)* by groups of points on elliptic curves. The
advantage here is that there are many elliptic curves to wargathus eliminating the need for
“luck”.

An elliptic curveover a fieldk (R, C,F,) is given by the cubic curve:

Y24+ a1 XY +asY = X2+ aX?+ au X + ag, (1.9)

whereay, as, as, aq, ag € k (NO, it's not a mistake thats is missing). Define the following:

by = aj + 4ay

by = aras + 2ay

bs = a3 + 4ag

bs = ajag + 4dasas — arazas + asa; — aj
cq = b3 — 24b,

ce = —biy + 36byby — 216bg
A = —b3bg — 8b; — 27bz + Ybabybg .

We're interested in nonsingular curves with discriminang 0. We also have the relationship
1728A = ¢} — cf . (1.10)
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If the characteristic of the field isn’t 2, we can divide by Zlaomplete the square:

X +a a3 a3
(Y + =50 = X0 o (ag + )X X + () + ), (1.11)

which can be written as:
YE=X?+ayX? +a, X +aj, (1.12)

with Y1 =Y + a1 X/2 + a3/2. If the characteristic is also not 3, then we canXet— % to get
the curve
Y2=X*+AX + B. (1.13)

The discriminant becomes = —16(4 42+ 27B%?), and the condition that the curve be nonsingular
is of course still verified by\ # 0.

Some notation: elliptic curves are denotBdand E (k) denotes the set of points dii with
coordinates irk, together with a special “symbolic” poiifito, co) called the point at infinity.

Now, we want to show our main point of this lecture, that ist thie can giveZ (k) the structure
of a group in a natural way. Our approach is a practical oneem@athematical approaches would
be possible.

P (:2.35,-1.86)
0 (0.1, 0.836)
-R (3.89, 5.62)
R (3.89,-5.62)

P+ @ =R=(389,-562).

¥ o=xd-Tx

Figure 1.1: Elliptic curve addition (source: certicom.gom

1.3.1 Group Law on Elliptic Curves

Consider the right-hand side B = X3+ AX + B, which is a cubic. A cubic can have either one
or two roots. When we take the square root of this cubic, wewetifferent families of elliptic
curves, as illustrated in figures 1.1 and 1.2 (our illustragiare done with underlying field= R) .
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+ R (-1.11,-2.64)
T R(-1.11,2.64)

22 =R =(-1.11, 2.64).

y2 =x¥-3x+5

Figure 1.2: Elliptic curve doubling (source: certicom.gom

The addition of two distinct point® and (@ on an elliptic curve is performed the following
way: let —R be the third intersection point of the line throughand @ and the curve. Then
P+ @ = R. See figure 1.1.

The doubling of a poinf> on an elliptic curve is performed the following way: let? be the
second intersection point of the tangent to the curve atgosnd the curve. TheR+ P = 2P =
R. See figure 1.2.

Now, to compute the formulas for this operation, et= (z1,11),Q = (x2,y2), P + Q =
(x3,y3) and soR = (z3, —ys3). In the caseP # (@, we wish to compute the intersection of the
line y = Az + p throughP and(@ with the curveY? = X3 + AX + B. If P # @, this give us
A= (y2 —11)/ (w9 — x1), While P = Q yields \ = (3z% + A)/2y,. Substituting, we get:

Ao +p)?=X>+AX+B (1.14)
0=X>—NX?+(A-22u)X + B —p? (1.15)
= (X —21)(X — 22)(X — w3) (1.16)
Hence (1.17)
)\2 =T+ X2+ T3 (118)
To find y3:

—(y3) — — (1.19)

T3 — X1
= ys = —y1 — M@z — 1) (1.20)



Explicitly,

T3 = —T1 — X2 + )\2 (121)
Ys = —y1 — AMaz — 1) (1.22)
Where eithet\ = (yo — y1)/(z2 — x1) (if P # Q) or A = (322 + A)/(2y1) (if P = Q).
We also add the rule that for any poifit= (z,y), —P = (x, —y) and theP + — P = (o0, o0).
We now have all the tools to compute on an elliptic curve, ardcan indeed show that this

operation forms a commutative group (associativity is Batd prove).
We now give two examples ovér/5Z:

We cannot draw a picture anymore. A picture would be quitetfesa. . . literally.
— Rer@ Schoof

Example 1(Adding points ovelZ /5Z). LetE : Y? = X + X + 1 overZ/5Z. First, we check
that this is an elliptic curve:

A=-16(4-13+27-1)= -1(-=1+2)#0 (mod 5). (1.23)

Let P = (0,1). We want to comput® + P. Using the given formulas, we get:

N2

A= % =3 (mod 5) (1.24)
r3=-0-0+3*=9=-1 (mod 5) (1.25)
ys=—1-3(-1-0)=2 (mod 5). (1.26)

SoP + P = (—1,2) and we can check that it sits on the curve.
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Example 2 (Determining all points ove¥./5Z). Consider the curve’ given in the previous ex-
ample. We want to list all points af.

First, we compute the squares#y5Z . We getl> = 1,22 = -1, (-2)> = -1, (-1)* =1, so
1 and—1 are squares, with root§l, —1} and{2, —2}, respectively. We proceed as in table 1.1 to
get the 8 points of the curve, to which we add the point at infinity

XX | X3+X+1 points

0] 0 1 0,1), (0, -1)
11 -2 none

2 | 2 1 (2,1), (2, 1)
2] 2 1 (=2,1), (=2, -1)
1 -1 -1 (—=1,2), (-1,-2)

Table 1.1: Finding points on the cur¥& = X3 + X + 1 overZ/5Z

A further question we can ask is whether the group is isomonait/9Z or Z/37Z x Z/3Z.
The answer i€ /9Z since we eliminate the possibility 8§ 3Z x Z/3Z by takingP = (0, 1), and
finding thatp 4+ p # —p. (See example 1.)
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Lecture 2. Prime and Smooth Numbers in Intervals

Lecturer: Andrew Granville Scribe: Arkadev Chattopadhyay

Here we go through a quick survey of results from analytic bentheory on the asymptotic
behavior of the number of primes and smooth numbers in a ginterval.

2.1 Prime numbers

Gauss made the conjecture that the number of primeswygtenoted byr(zx), is roughlyz/ log x.
Gauss’s guessed estimatendfr), called the logarithmic integral estimate and denoted ky )L.i
is inspired by the fact that he expected (aided by his veryésgive mental calculation of the first
“few” primes) the density of primes to be abadytlog » aroundn. More precisely,

) Todt
)= [
o logt

Integrating above by parts, we get

: T SN
L =—1 — .
(@) 1ogx< s aogx)'f)
The first big progress towards understanding the relatiprsihr(x) and Li(x) was made in
1896 by Hadamard and de la \i@dl Poussin who proved the following:

Theorem 1(Prime Number Theorem)im,,_, . w/’rl(—:g)x — 1.

Although the Prime Number Theorem tells us that the dengiprimes asymptotically agree
with Gauss’s estimate, it does not tell us much about the &rnetionr(x) — Li(x).

Using Fourier Analysis, we believe th&0®'® is the right point where Gauss'’s estimate is
inadequate. Moreover, it seems from the data that

Todt
m(x) _/ log ¢
2 g

It is remarkable that the correctness of the above stateisieqtiivalent to the famous Riemann
Hypothesis.
Riemann defined a zeta function, denoted by the following series for Re) > 1:

SOEDIES

n>1

< 22Y2(log 2)4 (2.27)

Although ((s) has a pole at = 1, it can be analytically continued to the set of every other
complex number i.eC — {1}. This analytic continuation is called the Riemann zeta fionct
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Conjecture 1 (Riemann’s Hypothesis)f ((s) = 0, then Rés) < 1/2.

Riemann knew that every negative even integer is a zero ofdataefanction but called them
the trivial zeroes. His hypothesis could be reformulatedasng “Every non-trivial zero of the
zeta function occurs on the Rg = 1/2 line”. The proof of the Prime Number Theorem followed
by establishing the following key fact:

Fact 1 (Hadamard and de la V& Poussin)The Prime Number Theorem is equivalent to saying
that((s) # 0 if Re(s) > 1.

It was totally surprising when in 1949 Hid/Selberg provided an elementary proof the Prime
Number Theorem.
Riemann had showed also the following remarkable fact:

Todt xP
w(x) — — N - (2.28)
(@) 5 logt M%Oplogx

In (2.28)p in the summation on the RHS has positive real part. Assummei + ia. Note that

x’ el
‘plog:c ~ |p|loga’
Hence, taking absolute values on both sides of (2.28) we get

[Errorl < )

p=PF+ic

xﬂ
|p|log x”

Thus,

Imax@ 1
Error] < —(log z)".
|Error] 1ogxz\p\( )

Thus, assuming the Riemann Hypothesis we see thatimax /2 and plugging this into the
above gives us the refined estimatergm) provided by (2.27).

2.1.1 Consequences for primality testing

Our guess estimate for the number of primes in the intewat + y] i.e. #(x + y) — 7(z)

will be roughly y/logz where2 < y < z'~¢. However, our estimate does not give us even an
integer for too small values of. May be it is true forr > y > (logx)3. It can be proved to
be true forz > y > x%3. On the other hand, the Riemann Hypothesis implies that dshfar
x>y > z/?log .

Aside Remark 1. In 1932 Cramer conjectured that there is always a priméinz + (log z)?).
This conjecture is still open.
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This discussion brings us to the question on how large ccwdgap between consecutive
primes be? Lep; =2 < ps =3 < p3 < ps < --- be the sequence of consecutive prime numbers
with p; denoting theth prime. The prime number theorem tells us that on the aeerag — p,, is
aboutlog p,,. Erdds and others proved that the gap between consecutive pcandse arbitrarily
large compared to the average. More precisely, it was shown

(loglog z) log log log log x

max, <, Pne1 — Pn > 2¢ 71 2.29
Hon<e Pt =P € 0BT (logloglog x)? ( )
In particular, (2.29) implies that
lim Supw — 0.
n—se ' logp,

By contrast, one can ask the question how small can the gabetaonsecutive primes be?
In a recent breakthrough, Goldston, Pintz and Yildirim sadwhat the gap can be arbitrarily small
compared to the average i.e.

lim inf 2P,
n—oo log Pn

The result above constitutes important progress to thepgvime conjecture that says there are
infinitely many pairs of primes that are separated by 2lite,, . inf p,,1 —p, = 2.

We come back to the application to the Goldwasser-Kilian Y @&ligorithm for primality testing
using elliptic curves. Recall that such a cuivés given by equations of the forp? = 23 + ax +
b modp for some primep. In the morning lecture, we saw that the points on such a dorve an
abelian group of ordeN,,(E£) with p — 2,/p < N,(E) < p + 2,/p. The idea of the GK algorithm
is to modify Pocklington’s algorithm by working with the grp of points on a randomly generated
curve E instead of the fixed groufd/nZ. What this modified algorithm requires (in practice) is
that the number of points on the cur¥ebe either a prime or twice a prime. In other words, we
are interested in the existence of a prignguch that

—-2/p+1 +2p+1

What we can prove is tha0% of intervals(z, > + z'/1°) j.e. “almost allz” have about
1/1000 . - . . . .

“— many primes. Consequently, Goldwasser-Kilian will prove phimality of a prime number
almost all of the time. Adleman-Huang bettered GK by workivith random hyperelliptic curves
overZ,. The number of points on such a curve lies in the intetval- cp/2, p* + cp*/?). Thus,
we need to find primes in the intervak, 2 4+ 2*/*) and with even higher probability than GK,
Adleman-Huang (AH) succeeds. Both AH and GK tests are mosthystorical importance now
as AKS provides a determinisitc poly time test for primality
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2.2 Smooth Numbers

A numbern is calledy-smooth if every prime that divides is no larger thany. We denote by
U(z,y) the number of integers less than or equat that arey-smooth. Obviously (z, z) = x.
Let us estimat@ (z, ) — ¥(z, y). Assumer > y > /z. Then,

U(z,z) — V(z,y) =#{n=pm <z :p>y}
= > #m< )

y<p<z
> -
p

y<p<z
Thus,
U(z,y) ~ 33(1 — Z l)
y<prp
It can be shown that
Zl =loglogx + C + O(L)

= log x

So,

1 (10gw>
2{: — =~ log 0 .
yep<z P 0gy
If x =y*andl <u < 2,then
U (2, 2"") & 2(1 — logu).
If 2 < u < 3, then following what we did before gets us

\Il(x,xl/“)%x(l— > %Jr > p%)

y<p<w D,q>YipgsT

2.2.1 Largeru
We will try to estimatel(x, y) recursively having established it for small values.ofNoting that

U(r,z) — V(r,y) = Z #{pm <z : mis p-smooth}.

y<p<z

This immediately gives the recursive relation

U(z,x) — V(x,y) = Z ‘Il(—,p).

y<p<z p
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Assuming¥ (z, z'/*) ~ zp(u), we get

z(1—p(u) = Z %p(%) (2.30)

y<p<z

Applying the Prime Number Theorem,

. 1
RHS of (2,30~ [ % (18D 4, (2.31)
tlogt logt
)

The RHS of (2.31) has an error term that has to be eventualgnteire of. Substitute= y™ so
thatlogt = wlogy. Itis easily verified then

dt dw

tlogt T W
Plugging this substitution into the RHS of (2.31) we get
v U dw
RHS of (2.31)~ x/ p(— — 1) — (2.32)
w=1 w w

Substituter = u/w, wherebydv/v = —dw/w and so we get

1= o) = [ oo 1) (2.33)

To summarize, what we have proved is thdtr, 2'/*) /z — p(u) wherep(u) is a complicated
function that is given by the integral equation (2.33). Tk thing to remember is thadt(z, y) =
xp(u) where,

plu) ~ L (2.34)

uu

andz = y*. This remains provably true for

y > 6(10g10g$)5/3+6 (2.35)

Surprisingly, the Riemann Hypothesis is equivalent to thevabestimate holding foy >
(log x)?*e.
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2.2.2 Lenstra’s algorithm

Lenstra’s algorithm modifies Pollardis— 1 algorithm of factoring by working with the group of
points on an elliptic curve. Roughly, we estimate the time Weaawant the algorithm to work. Say
itis B. Then letM = [].._pq° be aB-smooth number. We choose a random elliptic cukve
(overZ/nZ) and a point? on it. Then we comput® + - - - + M times- - - + P using the group law
for adding points orE. Letp be a prime factor of. If the curveE, (the oneFE induces oveZ /pZ
via reduction mog) has an order that i8-smooth and the order of all oth&t,, whereg|n, are not
B-smooth then this addition process identifieas a factor of.. Since the order of the group of
points onk), lies betweem—2,/p+1 andp+2,/p+1, we are interested to find-smooth numbers
in this intervat. The relationship betweeR andp is roughly given byB = O(log p)© for some
constant if we want Lenstra’s algorithm to run in polytime w.r.t itspat length (which idog n).
Moreover the running bound of Lenstra’s algorithm works$# humber ofB-smooth numbers in
this interval is what we would expect it to be according tareate (2.34) i.e4,/p/p(u)" where
y = z'/* = (logp)® = exp(cloglogp). This is unfortunately smaller than the range for which
estimates provably work as given by (2.35).

INote that corresponding to every number in this intervalca find an elliptic curve that has exactly that many
points on it.
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Lecture 3. Hasse’s Theorem

Lecturer: Red Schoof Scribe: Laszb Egri

Part 1

Before Re®’s lecture, Pavel shortly explained some probabilistimpiexity classes. Primes is in
coRP due to Rabin and Miller. Adleman and Huang showed thateRrisnin RP and therefore
Primes is in coRIM RP = ZPP. Finally, in 2002 it was shown by AKS that Primes is in P. Note
that the generalized Riemann hypothesis implies that prisiasP.

A problem X € ZPP if there exists a randomized polynomial time algorithrsuch that

A(:U):0—>x¢X,xEX—>P(A(x):1)Z%
A(x):1—>x€X,x¢X—>P(A(x):0)2%.

More General Form

Here Reg shortly remarked that in general, an elliptic curve hasfone 1> + a2y + asy =
x® + asx® + asx + ag but usuallya,; = a, = a3 = 0 and then we get the form which we use most
of the time.

Addition can be defined in the same way. Consider y;) + (z2,v2) = (x3,y3). The slope is

\ —ﬁ:i/cll if the two points are different
3z giﬂf“w*“ly if the two points are the same
ai1x+a3

$1+£L‘2+ZL’3:/\2+G1)\
—Ys3 + a1x3 + az = )\(%3 — 33'1) + Y1
—([B,y) = (I, -y +ar+ a3)'

Projective Coordinates

Let K be a field andt : y*> = 23 + Az + B be an elliptic curve such thatiar(K) # 2,3,
A, B € K and4A3 + 27B% # 0.
A projective planeP? is defined as

P? = {(z,y,2): (x:y:2)#(0,0,0)and(x :y: 2) = (2 : ¢/ : )
if there exists: € K* such thatr = 2/, cy =/, cz = 2/}
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We can define a map from? (affine space) int®? as(z,y) — (z : y : 1). We can also go
back:
(E,y) —(r:y:2)€P2#£0
z Z
curve projective curve

We can see that the infinity point is

z=0
(00,00) =<2 =0
y#0 y=1

Work on a Computer

Let K = Z/pZ. Then we can determine

2
$3:—$1—$2+(y2 yl) 3y3:1
Ty — 1

(here the calculation of the inverse of the denominator @easive, it can be done using the
Euclidean algorithm) or equivalently,

(21 — @) (m2 — 21)* + (Y2 — 1)t Y22 — 21)? 1 (22 — 21)?

in O(log®p) time.

Exercises

Let E be an elliptic curve? = 2° + Az + B over a fieldk = K such thathar(K) # 2, 3. Let's
determine the number of points of ordeand3.

Points of order 2

LetP = (z,y). ThenP+ P =0 P=—P « (z,y) = (v,—y) my=0—> 2+ Ar + B =
0 — there are three points of ordr

Letn € N. Assume that{ is an algebraically closed field. Define the setetorsion points
E[n] C E(K) to be the set of elements iti( ') which have order, i.e.

En|={PeE(K):P+---+ P = (00,00)}.

n

ThenE[2] 2 7 /27 x 7] 27Z.
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Points of order 3

Let P = (z,y). Assume that’ + P+ P = 0. ThenP + P = —P and—P = (z,—y). SO
P+ P = (z3,y3). Thenzs = —z —x+ \?, where) = 35‘;—314. So(— 2x+(3“" +A) L) = (2, —y).
It follows that (322 + A)? = 3z(Ay?) = 122(2® + Az + B) and3z* 4+ 6Az* + 12Bx — A% = 0.
So there are four zeroes. In faét|3] = Z /37 x Z/3Z.

Main Result
Let p be a prime and’ be an elliptic curve oveZ /pZ. The main result of today is:

1. E(Z/pZ) is almost cyclic, i.e. it can be generated by at niostement$;

2. p+1—2p < #E(Z/pZ) < p+1+2p.

Let K be the fieldF, whereq = p™ (p is characteristic). Her&(K) = {(z,y) : z,y €
K,y* = 23+ Ay + B} U{oo, x}. Let K denote the algebraic closure &t ThenE(K) C E(K)
(E(K) is an infinite group).

k(E) denotes a function field;(£) = { L&Y @) . ¢ r 0 e K[2], g(a) # 0}

g(x)

Morphisms

Assume thatt’; and E5 are two elliptic curves over a field. Then a morphisnt from E; to

E, maps any(z,y) € Ei(K) to (¢(x,y),%(x,y)) € Ei(K), wherep and are quotients of
polynomials with coefficients ik . Morphismh must induce a group homomorphism and must
map (oo, 00) to (oo, 0o).

Examples
Let £ : y? = 23 + Az + B. The following maps fron¥ to £ are morphisms.
(flf,y) = (SL’, _y)

z,y) — (2,y)
x,y) — (00, 0)

—~

The zero morphism.

Another example is the following. Let’s defif¢ + ¢)(z,y) := f(x,y) + g(x, y). Assume that
f=g=id Then(f+g)(P) = f(P)+g(P) = P+Ps0(z,y)+ (x,y) = (-2 + (354) : y)
and the function that mags, y) to (—2z + (31 +A) : y3) IS @ morphism.

2By almost cyclic we mean the following. Létbe a prime. Then if [p — 1 then the/-part (Sylow subgroup) of
E(Z/pZ) is cyclic. If {|[p — 1 then the proportion of; over (Z/pZ) with ¢-part not cyclic< 7
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The Frobenius morphism. Léf be a field of characteristicand«, 5 € K. Clearly,(a+3)? =
oP + 7. Let E be the elliptic curve)? = 2° + Az + B. Let P = (z,y).

(y*)" = (" + Az + B)?
(yP)? = (aF)® + APzP + BP

Then the point(z?,y?) is on E : y*> = 2% + APz + BP. (A(F) = A(E)?, whereA is the
discriminant.)
Lety,: £ — E be defined asr,y) — (2P, y?). Theny, is called thep-Frobenius morphism
Now let K = F,. Then ifz € K thenz? = z. (In particular, ifz € Z/pZ thena? = x mod p.)
Consider

Theg-Frobenius morphism is defined @s = ¢,™. Observe that the curvg = 23+ A%+ B4
is the same ag* = 2* + Az + B, so in facty, is from E to E.

NowletK =F, C K =F,. ThenK = {a € K : a? = a}, i.e.F, is the set of fixed points of
the mapo — o (from K to K). SOE(K) C E(K)whereE(K) = {(z,y) : ¢,(z,y) = (v,9)}.

Part 2

Recall that Rea went over this section in finer detail in the first part of héxtecture.

Recall the following. Letx’ = T, (or Z/pZ). Consider the elliptic curvé& : y* = 23+ Ay+ B
whereA, B € K. ThenE(K) C E(K). (E(K) is a finite field.) A morphism fron® to itself is
called an endomorphism. For example, ghErobeniusp,(z,y) = (x7,y7) from E(K) to E(K)
is an endomorphism.

Let E(K) = {P € E(K) : ¢4(P) = P}. Now p,(P) = P < (p —id)(P) =0 < P €
ker(yp, — id). It follows that

E(k) = ker(B(K) “= B(K)).

Question: ifE£; ER E, wheref is a morphism, then what fser(f)?
{f: E — E:amorphismovek'} = End(F) is aring. We can add, subtract, multiply:

(f +9)(P)=f(P)+g(P)
(f-9)(P) = f(g(P))

The identity for multiplication is the identity maj. The identity for addition is th@-morphism
(sends everything too). Let's define[n] = id + -- - + id, wheren € N. Observe that the map

n—times
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n — [n] from Z to End(E) is an injective map. Also note that] : E(K) — E(K) defined as
P+— P+ ---+ Pisnever the zero map.
————

An isogenybetween two elliptic curve®’; and F, is a morphismy : F; — FE, such that
©(0) = 0. Two elliptic curves arésogenousf there is an isogeny between them withp(E,) #

{0}
Let £ (K) and E5(K) be elliptic curves and : E; — E, be a non-constant "rational map”
defined over. Then composition witlf induces an injection of function fields fixing,

f* . K(El) «— K(EQ)

J'g=1fogy.

We definedeg(f) = deg(formulas), anddeg(f) = degsep(f) - deginsep(f) OF deg(f) =
[K(Ey) : f*K(F>)] (e.g.deg(id) = 1 anddeg(q — Frobenius) = q).

For example, let? = 23 + Az + B andE L)

(32% + A)?
(z,y) — (_2x+4(x3+Ax+B)’y (:c))

K(F) « K(F) ={a(zx +Yb(z)} a(x) andb(z) are rational functions in

— above is a degretextension.

(327 + A)? ;
-
(2 4+ Az + B)
yK(z) <y

—2
a:—|—4

Sodey([2])=4.

Fact:deg(fg) = deg(f)deg(g).
Let f be a morphism fronk to E. If f is ap-th power where the characteristic of the fielghis
thenf is inseparable. It is a fact that jfis separable thegtker(f) = deg(f).

LetE L E. Thenl = {f : E — E : inseparable} C End(E). Note thatl is a two-sided
ideal and! is a strict subset af'nd(E). For exampleg, € I.

Let f = [p] wherep is the characteristic of the field. Thém € I. The formula to express
f=(x,y)+ -+ (z,y) (p terms) is g-th power.

Corollary 1.

p fn=n] &1
= [n] is separable
#ker([n]) = deg(n)
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Notice thatp,—id ¢ I and it follows that#ker (¢, —id) = deg(¢p,—id). (And #ker(p,—id) =
#E(K).)

Let f: £ — E. Itis afact thatleg(f) = degnonsep(f)degsep(f) and therefore it is always the
case that#ker(f) = degsep(f)|deg(f). = deg(f) “kills” ker(f).

Let f : E — E be an isogeny. Itis a fact that there exists a unique iftapalled the dual
isogeny with the property” f = [deg(f)]. These maps are iAfind(E). Here are some properties
of fv:

fr=f
(f9)" = 19"
deg(f*) = deg(f)
(f+9)°"=(f"+4g") (hardest to show)

Let's do an example. LeE, = F, = Z/2Z andE : y* + xy = 2® + 1. Let’'s compute the dual
of da(w,y) = (2°,4?), deg(hs) = 2.

[2]: E — E:
(z,y) + (z,y) = (x2 + % (2 + 1)1+ )+ i)
= (V(2)2, W(z,9)?)

Therefore

(z,y) ¥ (V(2), W (z,y)).

Observe thab, o g = [2] so the dual ofp; is g.
Observe that multiplication is self-dual:

)" = [id + ... +id)" = id+ ...id = [n].

Then[deg([n])] = [n]’[n] = [n]* = [n?] and it follows thatdeg([n]) = n?. It follows that for every
nif p Jnthen#tker([n]) = #E(K)[n] = n?. Then

= E(K)[n]={P€EK):P+...+ P=00} 2 7Z/nxZ/n

n

Recall that

HE(K) = #ker (9, — id)
= deg(o, — id).
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We define the traceof a functionf € End(F) as follows.t = trace = f + f*. Then

fHr=0+0DG+ 0D -1 -
= [deg(f + 1)] — [deg(f)] — [1]
Therefore[f + f*]isin [Z] C End(E). For anyf we can write that
=+ f+ff=0 (in End(E))
f2=1tf = deg(f)] =0
t anddeg(f) are integers so the mapsEnd(E).
Proposition 3 (Analogue of Riemann Hypothesis, 1933, Hassé)x 4deg(f).

Letm,n € Z.

£

0 < [deg([m] + [n]/)] = (Im] + [n]f)([m]" + [n]" f*)

([m] + [n]f)([m] + [n]f*)

([m]* + [m][n)(f + ) + [n]* £ 1)
m] [m]

_ W((—)z 2 I deg(py)

] n

It follows thatz? — tx + deg(f) € Z|x] has only> 0 values. Thereforé® < 4deg(f).

—

Corollary 2. #E(K) =q+ 1 —twith [t| <2,/3.

Proof. We have

#LE(K) = deg(¢q — id)
= (¢g — id)(¢; — id)
=q+1-t

andi? < 4deg(¢,) = 4q as required.
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Lecture 4. Constructing Elliptic Curves of Prescribed Orde

Lecturer: Eyal Goren Scribe: Anil Ada

4.1 Introduction

Consider an elliptic curvéy overF,, given by the equatiop? = z* + Ax + B. The number of
points on this elliptic curve is equal 10+ 1 — t where|t| < 2,/p (Hasse bound). Lep denote
the p-th Frobenious functionp(z,y) = (2P, y*). Then we know(t] = ¢ + ¢" andy satisfies the
quadratic equation? — tx +p = 0.

We have seen the ring E(fl) containsZ. In fact it contains the subring containid@gandp,
i.e. it containsZ[y]. The ringZ[y] looks like a subring of since

t+ /1?2 —4p

C.
5 €

gp:

(There is an ambiguity because af™) This subring is not contained iR because? — 4p < 0.
In this lecture we will be interested in the following threeegtions.

1. Given a permissiblg does there exist an elliptic curve oy with p + 1 — ¢ points?
2. If so, how many are there?

3. If so, how do you write them down?

The quick answers to these questions are as follows.

1. Yes.

2. A certain “class number”. (This can be calculated rapidtyeachp andt.)

3. The method is to construct elliptic curves over a numbéd fié that is a finite extension
of Q and a subset of. Then reduce these elliptic curvesnod p. One looks for elliptic
curveskE overC such that En@E) also containg.[].

For this lecture, we assume that EAJ is imaginary quadratic, i.eE is ordinary. This is
equivalent to saying # 0.
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4.2 Thej-invariant

Let E4 p be an elliptic curve over the fieldwith points satisfying the equatioff = z* + Az + B.
We can associate theinvariant of £ 4 p:

4A3

(Bap) = 1728———
(Eap) = 1128 mg e

Now we state two facts about thianvariant.

e If kis an algebraically closed field théty 5 = E g ifand only if j(Eap) = j(Ea p).

e In general, any elliptic curvé over k with j(E) = j(E, ) is isomorphic to the elliptic
curve E,; given by the equatiody? = 23 + Az + B, d # 0. Note that this equation can be
written in standard form via simple manupilatioris; is isomorphic taF, overk if and only
if d/d’ is a square it *. Therefore one can deduce that for gny F,, there exists precisely
two elliptic curves up to isomorphism ové¥, with a given j-invariant (unlesg = 0 or
j = 1728).

Given somej € k, the elliptic curveE; given byy? = 23 + A(z + 1) whereA = % is

such that thg-invariant of £; is j. Givent, to find all the elliptic curves ovef, that havep+1 —t¢

points, we will find all thej-invariants of the elliptic curves ovéf, with p + 1 — ¢ points. Then
given thesej’s, we can construct the corresponding elliptic curves. eHge have to be careful
because the curve we constructed might actually payel + ¢ points. If £;(F,) hasp + 1 + ¢
points than the elliptic curve given hkiy? = 2* + A(x + 1) whered is a non-square iff,, (i.e. the
quadratic twist) will have) + 1 — ¢ points.

We will be interested in elliptic curves over the complex ars and thg-invariants of these
elliptic curves. This is because:

Fact 2. The j-invariants of E(C) with End E) D Z[ V"~ V;L“’} reduce mod p bijectively to

j-invariants of those elliptic curves ov&y, with p + 1 — ¢ points.

4.3 Endomorphisms of Elliptic Curves OverC

Let £ be an elliptic curver ovet given by the equatiop? = 23 + Az + B whereA, B € C. Then
the endomorphism ring E(&) = {f : E — E | morphisn} containsZ. Here eacty is of the
form f(x,y) = (p(z,y),¥(x,y)) for somep andi.

An elliptic curver E over C is a torus and every torus is isomorphic@gA whereA is a
lattice. GivenE, there exists a lattic& + Zr, Im(7) > 0 and a surjective group homomorphism
w : C — E such that Kefw) = {z € C | w(z) = 0g} = A. Thus the first isomorphism theorem
gives usC/A = E.

Consider two elliptic curve#; = C/A; andE, = C/A,. Suppose there exists € C such
that\A; C A,. Then we have the following diagram.
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C/A C/A,

fa
Here f\(z mod A;) = Az mod A,. In fact, any morphism fron¥; to E; is of this form so
Hom(Ey, Es) = {A € C | AA; C Ay}, Similarly we have En@®) = {\ € C | AA C A}. Ifwe
write A using basid and7: A = Al = a + b7, AT = ¢ + d7, then we see that is actually of the

form
a cC
b d
mappinga + A7 to (ac + ¢ff) + (ba + dB)T. So EndE) C M, (Z).
One can conclude that

EndE) — { "

HereO is anorderin a quadratic fields = Q(v/d), whered is a square-free integer. The integral
closure ofZ in K is called thering of integersof K and is denoted . We haveOx = Z[0] =
Z -1+ 7 -6 with integral basid, y where

5_{ Vd ifd=23 mod 4

%ﬁ ifd=1 mod4

An order O # 7Z is a subring contained i@ . The discriminant o is denotediy and

g — 4d ifd=2,3 mod 4
E=1d ifd=1 mod4

Any order has the shap&mJ| for a unique positive integen with discrimimantm?dy.
Suppose End) = O. We have) - 1 = a + br and sor = 23¢ € K. ThisimpliesA C K is a
rank 2 free abelian group af@dA C A, i.e. A is an ideal ofO.

Fact 3. Elliptic curves E over C with End E) = O is in bijection with ideals o0 up to the
equivalence\ ~ aA, a € K*. The latter is the class group @1 and is denoted by @D).

LetO, = Z[L M} Recalling Fact 2 we conclude:

2

Theorem 2. The number of elliptic curves ove&r, with p + 1 — ¢ points is equal to the number of
elliptic curvesE overC with Ox 2 End E) 2 O,, and this is equal to

> #c(0),

KD0D20,

where K = Q(+/t? — 4p).
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There is an explicit formula fogcl(O) and therefore the number of elliptic curves oler
with p + 1 — ¢ points can be calculated rapidly for egehndt.
Our next goal is to find thg-invariants of the elliptic curve&’ overF, with p + 1 — ¢ points.
Consider the polynomial
fo= [ (@-i®)

E/C:
End E)=0

whereQ is an order with discriminanb.

Fact 4. Let E/C be an elliptic curve with End) = O. Thenj(E) is an algebraic integer, i.e.
fo € ZIX].

The roots off, in F,[X] are thej-invariants of the elliptic curves ovét, with endomorphism
ring O. Given arootj € F, of fo whereO has discriminanD = ¢* — 4p, the corresponding
elliptic curve (or the twist) oveF, hasp + 1 — ¢ points.

The rest of the lecture is devoted to showing how one can ctanfpu Viewing O as a lattice
in C, the elliptic curveC/O has endomorphism rin@. Furthermore, every ideal C O is a
lattice inC and the curveC/A has endomorphism rin@ if A is invertible O—ideal. We will be
interested in the bijection between ideal classe® ¢i.e. cl(©)) and binary quadratic forms.

Suppose\ is anO-ideal where\ = Za + Z3, a, § € K = Q(v/d). Without loss of generality
(Ba — a3)/v/d > 0. Associate to\ the quadratic form

NmM(za — yf)

NmA

wherea = aa, —b = off + Ba, ¢ = 33 and we assume Nm = 1. This produces positive
definite primitive binary quadratic form with discriminait = disq O). We write (a, b, ¢) for the
iJ
k¢
fliz + jy, kx + ly). Since—1 € Sly(Z) acts trivially, we get an action of P$(Z). Each
equivalence class under this action can be representedawittique form{a, b, ¢) with a > 0,
b < a < ¢, b?—4ac = D and if either|b| = a ora = cthenb > 0. Let F'), denote these quadratic
forms.

= az? + bxy + cy?

form az? + bxy + cy®. A matrix A = € SLy(Z) acts on these forms Vifi(x, y)A =

Fact 5. The ideal classes @, cl(©), is in bijection withF:

—b D
(a,b,c) — aZ + +\/_Z
Now we can computé, as
H (l’ - ja,b,c)
(a,b,c)€EFD

wherej, ;.. = j(E,). Herer = =YD andE, = C/(Z + Z7).

It is a classical result that the Fourier expansiori(df,) has integral coefficients; it is a power
series ine?™" that we can calculate to any amount of precision. We know fhahas integer
coefficients, we only have to approximate thealues in the product with high enough precision.
The running time to calculatg, is O(|D|(log | D])3(log log | D|)?).
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Lecture 5. Schoof’s Algorithm

Lecturer: Red Schoof Scribe: Mark Mercer

5.1 Review

Since many people had questions about the material in thred@yemorning lecture, we will spend
the first hour going over this material in finer detail. Follog that, we will continue with the
schedule topics, which is Schoof’s algorithm for computiag (F, ).

The material regarding basic properties of endomorphigmalgotic curves and their relation
to the problem of counting the number of points on a curve @folbnd in Chapters 3 and 5 of
the Silverman text. The applications can be found in theligxtawrence C. Washington.

Recall that in the Tuesday morning lecture we showed#atZ/pZ) satisfies:

p+1-=2p<#E(Z/pZ) <p+1+2yp.

Note in particular that the value 6§ E£(Z/pZ) is centered around + 1. There is an intuitive
reason for this. Let us take for example a cuiWe= X? + AX + B, and we will try to count
the points directly. First of all, there is always one poinindéinity. There arey possible values for
X, each of which contribute either two, one, or zero pointh®durve. A given value for X
contributes two points if* + Az + B is a nonzero square, or one point in the case that this value
is zero. Otherwise, this value is a nonzero nonsquare artdlmates no points to the curve.

Let us definey : Z/pZ — {—1,0,+1} by:

1 a IS nonzero square,
x(a)=40 a=0,
—1 otherwise

You may note that this corresponds to the values of the Lagesyinbol. We can rewrite the
equation for# E(Z/pZ) as:

#E(Z/pZ) = 1+ Y (1+x(X*+AX + B))

x€L/PL

= l4+p+ > x(X*+AX+B).

x€ZL/pL

We will now proceed to give some background on endomorphisinetliptic curves. Let us
fix the field to beF,, and let us denote bignd(E) the set of endomorphism ov&y. This forms
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a ring with function addition(¢ + ¢)(P) = ¢(P) + ¢(P) as the additive operator and function
composition as the multiplicative operator. The identityhe ring is the identity mappingl, and
the zero is the morphism mapping all points to zerof ¥ End(E) then the morphisnf can be
expressed as a mappifng y) — (¢(x,y), ¥ (x,y)), wherep andy are polynomials.

An important class of endomorphisms on curves are what wéheahult-by+» mappings. For
n € Z we defingln| to be the sum of. identity mappings. Then — [n] is a morphism fron¥ to
End(E). Another important example is th@obenius morphispdefined asy,(x, y) = (27, y9).

For f € End(E), thedegree off or deg(f) is defined agK (F) : f*K(E)]. Informally,
we can think ofdeg(f) to be the degree of the formulas fé¢r We can factor this quantity as
deg(f) = deg(f)sep- deg(f)insep, theseparableandinseparabledegrees of . It can be shown that
#ker(f) = deg(f)sep- We will use this fact in several counting arguments in trousé

For f € End(F), we definef" to be the (provably unique) endomorphism such ftat f =
[deg f]. Them mapping’ — f* is an involution, i.e. it satisfies:

) =1
(f+9)° = f'+g°and
(f9)" = g°f".
Here are a few easy-to-prove identities that we will use:
id" = id,
[]" = [n],
ff = l[degfl,

deg(f") = deg(f).

This implies, for example, thateg([n]) = n?. This can be used to prove th&{Z/pZ) can be
generated using at most two elements. The idea here is togese the abelian group(Z/pZ)
as a direct product of cyclic groups, and analyZ& /pZ)[(] where( is the order of the group.

For some curves, the mult-by-and Frobenius mappings are sufficient to genefatéd(E).
This is not always the case, however. We will now introduaaeanore endomorphisms which
we haven't seen before. Consider the curie= X? — X over fieldZ/pZ with p = 1 mod 4.
The discriminant of this curve is64. Let us denote by;] the endomorphism defined By, y) —
(—x,1y) (note that we usg here as a symbol to suggest the action of a complex numbeot is n
meant to represent a positive integer). Thgij| = (z, —y) = —(z, y).

(X, V) (—x,iv)



Note that[j]> = [—1], so in particular this map cannot be equivalent to any of thé-toy-n
maps. It can be shown thatd(F) is in fact generated by the mult-bymaps and th&j] map.

The properties of the involutiofi — (v are similar in some sense to complex conjugation. An
arbitrary f € End(E) will, for example, satisfy:

f+f° = (f+id)(f* +id) — ff* —id
(f +id)(f +1id)" — ff* —id
deg(f +id)] — [degf] — [1]

t] for some integet.

= |
= |
We callt thetraceof f. The endomorphismg and|t] satisfy f? — [t] f + [deg f] = 0, in other
words f is a zero ofX? — [t] X + [deg f]. We call this the characteristic polynomial pf
In general, it is not always clear how to compufte However, if the coefficients of the char-
acteristic polynomial are known, then we can immediatelygplinto the equatiorf” = [t] — f.

Here is another example. Consider the curfe= X* — X overF,., wherep = 3 mod 4. In
this casel, = F,(4). In this case, thé’nd(E) ring is generated by thig] mappings, th¢j| map,
and the Frobenius map,, defined as usual:

(X,Y) 2

(X,Y) ¥ (XP,YP)

(—X,iY)

Then:

XYY P (CX0Y) 2 (2 XP,PYP) = (—XP, —YP)
Pp
(xr,yP) P (xr iy

We observe quaternion-like behavior with respect to thesgmsms:

Spq[j] = _[j]%’qa

er = —1pl,

It can be shown tha&nd(FE) is generated by the mult-by-mappings, théj] mapping, and
the ¢, mapping. Curves having this property are cakegersingular(although this is a bit of a
misnomer). They have a number of equivalent characteoizgiti
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5.2 Hasse’s Theorem

We now give a sketch of the following result:

Theorem 3. (Hasse) For any curvé over finite fieldF,, we have
#EF,) =q+1—1t,

with |t| < 2,/3.

Let ¢, the g-Frobenius morphism. It can be shown that all of the pointg'(fi,) are fixed by
@,. Therefore E(K) = ker(yp, —id). In particular,

#E(K) = # ker(@q - Zd) = deg(@q - id)sezr
It can be shown thap, — id is itself separable, s¢E(F,) = deg(¢, — id). Now:

[deg(p, —id)] = (pg —id)(py — id)"
= ‘Pq@z“‘id_@q_@z
= lg]+[1]+[1].

5.3 Riemann-type theorems

In the last section, we showed that the number of points orlipti@curve overF, isq + 1 — ¢,
with |t| < 2,/g. Results such as these are often referred to as being analtgtive Riemann
hypothesis. In this section we will give some explanatiotoaghy this terminology is used. First,
we need to understand this we will first describe two ways irctvthe Riemann Zeta function has
been generalized. Recall that this function is defined to éattalytic continuation of the function
defined by:

)=

ns
n=1

on alls € C such thatRe(s) > 1. Euler showed that this function can also be formulated as:

=11 ==

p prime

Furthermore, the function can be reexpressed as a sum @veetlof ideald of Z as follows:

1
C(s) = Zﬂ

ICZ
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This type of expression is a special case of what is call@kdekind Zeta FunctionThe
Dedekind Zeta function over fielfl is defined by:

1
Gel(s) = Or I

ICOx

whereOr is the ring of integers, and the sum is again taken over thefsdeals. We obtain
the Riemann zeta function whéh= Q. We can also write:

1
&6 = 1 =7

PCOx

Another type of generalization of the Riemann zeta functi@s wtroducted by Artin. He
defined:

Grao0(8) = Y e
e Z [F,[X] - 1)
whereF,[X] be the set of polynomial with coefficients ). Each ideal is generated by a unique
monic polynomial, so to evaluate this sum we count, for easfjreki, the number of monic
polynomials of degreéis ¢‘. Thus,

2 3
- q q q
CIFq(X) = 1+E+ﬁ+ﬁ“‘
B 1
l—q-q

We want to define a zeta-type function for elliptic curygscombining the two generalizations
above. We define:

1
(e(s) = H T~ R P

There exists a bijection of the prime idealsf®hot equal to 0 and the poinf2 of £ overF,.
So we can rewrite this function as:

1
Ce(s) = H T T T ps-
PEE(F,) L= #F,(P)
This function can be evaluated to:

1—tqgS+q-qg%
S O

Suppose is a zero of . Theng® is a zero ofX?+¢ X +¢. This is the characteristic poly of,,
so we know that the discriminant is 0 so there are two roots of equal magnitude. In particular,
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l¢°| = /g, and thug;*) = ¢z andRe(s) = 1. All of the zeroes lie on the critical line where the
points have real part equal 1¢g2, so we say that the Riemann hypothesis(fgrx is true. Unlike

the Riemann Zeta function however, this function is perimd'ctduloligfl.

5.4 Computing#FE(F,)

In this last section we address the following computatigmablem:

Input: Y2 = AX + B+ X? overF,,
Problem: compute#E(F,).

We focus on the particular case whéle= Z/pZ, for p > 0. In this we are helped in this case
by Hasse’s Theorem, and also the fact théf, ) is either cyclic or almost cyclic, in the sense that
it is generated by at most two elements.

We will consider two techniques. The first technique is tedily evaluate the formula:

#HE(Z/pZ) =p+1— > (

X€eZ/pZ

X3+AX+B)
» .

Roughly, this is a feasible algorithm fpr< 100.

For larger primes, we can use the following algorithm. Thia randomized algorithm which
will be feasible for primes of size up t?° (roughly).

This algorithm uses a time-space tradeoff technique c#iedaby step, giant stef@echnique.
Leta = \/4,/p = p!/4. The first step is to choose a random pdiht= (z,y). We can do this
by picking a randonx in IF, and then solve fog. Our next objective then is to compute the order
of this point. To do this we compute all the points in the seqed”, 2P, 3P, ..., aP. Since we
can compute the inverse of each of these points by negatif tomponent, we have actually
computeda points. We call these points thaby stepsWe store these points in a hash table and
from here on we assume that we can check in constant time eihetfiven point is a baby step.

We also compute the poiriRa + 1)P and the point(p + 1)P. From this we compute, for
all j, Q; = (p+ 1)P £ j(2a + 1)P. We check each poin®; in turn to see if it is one of the
baby steps. Indeed by the choiceaoive will find for somei, 7 with —a < 7,5 < a such that
Q; = iP. It follows then thatnP = 0 form = p + 1 + (2s + 1)i — j. If there is exactly one
(i, j) such that); = iP, then we will have thatn is the order of the grou@/(F,), and so in this
case#E(F,) = m. This will be the case for most curves. The running time fds giigorithm is
O(p1log’ p).

In rare cases there will be tw@, j) pairs for which@); = iP. In this case, it is a fact that there
are exactly two solutions. We can handle this exceptionsé¢ ecsing some additional machinery
by J.-F. Mestre.
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Lecture 6. Hyperelliptic Curves Point Counting by p-adic Methpd

Lecturer: Kiran Sridhara Kedlaya Scribe: Nitin Saxen

6.1 Introduction

The finite field in this lecture i, whereq = p" andp is a prime. Think ofp as a fixed or at
least a small prime. In this lecture we will see Kedlaya'salym to compute the number &%-
points on a given curvé&(F,) of genusg usingp-adic methods. The complexity of the algorithm
is O(g4N3). Elliptic curves are of genus and this algorithm is better than Schoof’s algorithm
(remembep is fixed). For higher genus this algorithm is exponentiakytér than Schoof’s! A
hyperellipticcurve of genug is given by the equationy? = f(x) wheref(z) is of degreg2g+1).
In this lecture we will see only a sketch of Kedlaya’s algamitin the special case of elliptic curves.
Our problem: Given an elliptic curveZ (F,): y* = 2* + Az + B. Find the numbet for which
#E(F,) =q+1—tand|t| <2./q.
There are currently four ways to do this:

1. Enumerate all thE, points onE. Deterministic and time taker®(q).

2. SinceE(F,) is a group of which we have a size estimate anaw@tle access. We can use
generic group algorithms (eg. baby-step giant-step). Raimngk and time takerf)(qi).

3. Schoof’s algorithm. Deterministic and time tak@(:logB q).
4. p-adic methods. Deterministic and time takenly(pN).

We will look at the fourth method here. But before that let us @0 special instances when
#E(F,) is easy to compute.

When the given equation of the elliptic curve has coefficiemt8, then it is easy to compute
#E(F,). This is because we can trivially compufeZ(IF,) and then using the following lemma
compute#E(F,).

Lemma 1. Let £ be an elliptic curve with coefficients . If #£(F,) =p+ 1 —t; ande, 3 are
the roots of(z? — tyz + p) then#E(F,) = ¢+ 1 — v — 3V,

Proof Sketch.We have from the theory of elliptic curves th&tt(F,) = p + 1 — tr(¢,) and the
Frobenius ma, satisfies the (endomorphism) equaticqzrﬁ:— tr(¢p) - ¢, +p = 0. Similarly,
#E(F,) = q+ 1 — tr(¢)) where we can now expres$s(¢)) in terms of the eigen values of

o O
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An elliptic curve E(F,) is calledsupersingulaiif ¢ = 0 (modp). There is a way to check
whether an elliptic curve is supersingular and if it is thegre is an explicit expression f#E(F, ).
Thus, we can assume that our given elliptic curve is not Sipgular.

Rough Idea: In p-adic methods we compute(modp™) for large enoughn’s. Since we have
a bound fort it will be enough to go upten ~ N.

6.2 p-adic Numbers: Preliminaries

Definition 1. p-adic numbers: Informally, for a primep, Z, are basep expansions that are infinite
on the left of the “decimal” unlike the natural integers. A, are basep expansions that are
infinite on both sides of the “decimal” unlike the rationals.

Note that a typical elementin Z, looks like:a = ag+ap+asp®+- - - where0 < a; < pand
there maybe infinitely many;’s in the expansion. They, (ap + a1p), (ag + aip + azp?), ... can
be seen as the valuesdimodp), a(modp?), a(modp?), . . . respectively. This fact can be used to
define the addition and multiplication operations in theZgt

Problem 1. Z, is a principal ideal domain an®@, is a field. Both are of characteristit.

A useful result about the-adic numbers islensel’'s lemmalt says that iff (x) is a polynomial
with coefficients inZ, then a rootx of f(x) (modp) can be lifted to a rood in Z,,.

Problem 2. Letp be an odd prime. I € Z, such thatz is a square module then/z € Z,.
(Hint: Use Newton’s iteration.)

Quadratic extensions ofQ,: If x € Z, is not a square modulp then the extension ring
Q,[T]/(T? — z) is infact a field. It is a field of dimensiohaboveQ,.

Higher extensions ofQ,: In general, iff, = F,[T]/(P(T)) is a finite field whereP(T') is
an irreducible polynomial with coefficients if,. Then we can embef(T") in Z,[T] and call it
P(T). This gives us an extension ring 4f;:

Z, = Z,[T)/(P(T))
and a corresponding extension field@f:

Qq = Q[T1/(P(T))

For example, the finite fielly = F3[7]/(T7? + 1) of characteristi@ has the corresponding
infinite field Qy = Q3[T]/(T? + 1) of characteristic).
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6.3 p-adic Cohomology Framework

The framework of cohomology has its roots in the theory ofvearover characteristic zero. We
know, for instance, that a circle iR? locally looks like a line and we know that there are ‘objects’
calleddifferentialsthat can bentegratedon a part of the circle. Thus, the differentialdf, where
(r,0) are the polar coordinates, when integrated on the whol&dgjiges its circumference. The
general philosophy is to associate linear data to nonligeametric objects. This associated linear
data is callecohomology

We want to bring these notions of locality and differenttalsurves over characteristic> 0.
This is what thep-adic cohomology framework achieves and gives us a strooigdostudy and
to do computations in general curves over finite fields. Wedcskbere the main ideas of this
framework in the case of elliptic curves.

Definition 2. LetF,(E) = fraction field of F,[z,y]/(y* — 2* — Az — B), be the set of ratio-
nal functions defined (almost everywhere) on the elliptized. There is a naturatlerivation
operator d defined or¥,(£). Forany f, g € F,(E), d satisfies:

o df =0if f €T,
o d(f+g)=df +dg.

e d(f-g)=f-dg+g-df.

For exampled(x?) = 2zdx andd(y?) = py?~'dy = 0. But what arelz anddy? To give them
meaning we define the following module.

Definition 3. The sef( of differential forms of an elliptic curveE(F,) is the formalF-linear
combinations of - dg, wheref, g are in the function field,(E) of the elliptic curve.

Almost by the above two definitions we have the following prdes of(:
e dis alF,-module homomorphism froffi,(E) — (2.
e (2 is a module oveF, (E) and is generated byr, dy modulo(2ydy — (3z2 + A)dx).

It turns out that there is a uniguedimensional subspace ©f with no singularitiesanywhere

on E. Itis generated by:
dv  2dy

y 322+ A

Note thatdj'” has a singularity only af = 0 but at that poinBz? + A # 0 (asE is nonsingular) and
hence ay = 0 we can use; %% which is well defined.

How does an endomorphismof E acts ondf? Usingy, anf € F,(£) can bepulled-backo
another function)*(f) := f oy € F,(E). Similarly, a differentialf - dg € €2 can be pulled-back

to another differentiad*(f - dg) = ¥*(f) - d(¢¥*(g)). Thus, an endomorphisg of E extends to:
¢ an algebra homomorphisg : F (E) — F,(E) by f — f o1, and
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e alF,-module homomorphism* : Q@ — Qby f-dg— (f o) -d(go).

Now any endomorphisnp of £ when applied todf gives% which is again nonsingular

everywhere o). By the uniqueness of the nonsingular subspace generatféfdvb@/ get that:

Lemma 2. For any endomorphism of E/(FF,) there exists a,, € [F, such that

(0N (d—x) =cy - dx (6.36)

The above lemma shows the “usefulness” of working with tifieidintial forms: some of these
are the eigen-vectors of the endomorphismé& of
What do these differential forms tell us about the Frobenmaienorphismyp,? We could apply

b, ON dj’" and get,, such that:
. (dz dz
¢ (—) = Cgy " — (6.37)
Y Y
But thenc,, is an eigenvalue af, and will satisfy the endomorphism equation of the ellipticve:

ciq —t-cy, +q=0 (6.38)

and hence it seems that we can recavigom the valuer,, and hence computg E(IF,). Except
that there is a problem: cleardy= 0 (modp), also if you do the derivation in Equation (6.37) then
cg, COMes out t® (modp), thus, Equation (6.38) is actually a triviality. This disarshappened be-
cause the field over which the differential forms are defiresldainonzero characteristicCan we
generalize these ideas to a field of zero characteristicsthidtas a Frobenius-like endomorphism
whose eigenvalues are related4® (IF,,)?

The idea of Satoh [Sat00] was to lift a given elliptic cutk€F,) together with its Frobenius
endomorphismp, to ag-adic elliptic curveE(Q,) and a Frobenius endomorphisin £(Q,) —
E(Q,). Then he computed(dz/y) to getc;. Finally, approximated from the (now nontrivial)
equation:ci~5 —t-cz+q=0overQ,. Assuming a fixegp andg = p"¥ Satoh’s algorithm runs in
time O(N?).

6.4 p-adic de Rham Cohomology

Satoh’s algorithm is a fagt-adic algorithm for elliptic curves. Kedlaya [Ked01] usedr@re
general cohomology and gavepadic algorithm that is efficient for hyperelliptic curvessdapo-
tentially works for higher dimensional varieties as well.

In classical analysis de Rham cohomology is the way to ageatifferentials to curves (in gen-
eral, manifolds) over characteristic zero (motivatingeca®). The cohomology used in Kedlaya’s
algorithm is a version of de Rham cohomology for curves overzeoo characteristic developed
by Dwork and Monsky-Washnitzer (1960s).
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Given an elliptic curvel(FF, ) it is again lifted to£(Q,). But now the Frobenius magp, is
lifted to a ‘strange’ morphism (which is ¢, when restricted t&, [z, y|) that satisfies:

5) =t

o (z) =y - \/ A AV B e asa power series
B (23 4+ Ax + B)? '

Now the differentializ /y is no more an eigen vector ofbut still the action of) on the differential
gives some information aboutIf 2’ is the module of differential forms associatedd¢Q,) then

Y /Im(d) (recall thatd is the derivative operator) is generated%yand% overQ,. Thus,¢ acts

on (Y /Im(d) as a2 x 2 matrix which we can compute. Thisx 2 matrix of ¢ still satisfies the
endomorphism equatiopf — ¢ - ¢ + ¢ = 0. Thus, we can again approximati Q.
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Lecture 7. Schoof’s algorithm and some improvements

Lecturer: Red Schoof Scribe: Valentina Settimi

7.1 Schoof’s algorithm

In this section we preseichoof’s algorithnwhich is a deterministic polynomial time algorithm
to determine the number of rational points of an ellipticveuE’ over a finite fieldF,,.
We assumehar(F,) = p # 2, 3 (the algorithm actually works, with slight modificationsea
whenp = 2 or 3). Let
Y?=X3+AX+B withA, BeF,

be theWeierstral3 equatioof £ and let

‘Pq:E(Fq) — E(F,)
(x,y) — (2% y9)

be theg-Frobenius We have#E(F,) = ¢+ 1 — ¢, with t = trace(p,) and|t| < 2,/q (Hasse’s
Theoren).
The main idea of Schoof’s algorithm is:

e computef (mod 1), for the first few small primeg
e computet (mod [], ), usingChinese Remainder Theorem

o if [[,1 >4,/q,thent (mod [],) = t, by Hasse’s Theorem.

The question is: how can we contifd], (? As consequence of tieak Prime Number Theo-
rem we have[ [, ;.ime | ~ €*. We want

e~ [] 1>4va e x>Wn(4q).
1<zx,lprime

Sincegq is large, it is enough to set ~ log ¢ which means to take all the primés< logg. The
number of such primes is clearly less tHagg.
Now we show how to computg £(FF,) (mod [). Below is anexample:

l =2 Compute#E(F,) (mod 2).

#E(F,) =0 (mod2) < #E(F,) even
<= dP € E(F,) of order2.

So we want to check the existence of a paiht= (z,y) € E(F,) which satisfies the
following two requirements:
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1. Pe E(F,) © ¢,(P)=P & (29, y9) = (z,y).
2. Poforder2 & P+P=0&P=-P & (v,y) = (v,—y) ©y=0=2+Ar+B.

Thus

1=z
2+ Ar+B =0

— ged(X1—X, X +AX +B)#1 inF,/[X]

#E[F,)=0 (mod?2) <= 3JrecF,st {

We cannot compute su@ad directly, becaus&? is too large; but we can compute it in the
following way:

e computen(X) = X9 (mod X® + AX + B)inF,[X]/(X?®+ AX + B);
e computeged (h(X) — X, X3+ AX + B)inF,[X].

X4 (mod X? + AX + B) can be computed efficiently using the binary expansioparfd
repeated squarings. Moreovgif,[X]/(X? + AX + B) = ¢*, so any element of the ring
F,[X]/(X?+ AX + B) has size3log q. Therefore the amount of work i€?(log ¢' *#) with

1 < p < 2 (in particulary = 2 if we use standard multiplications apd= 1 if we use fast
multiplications).

I > 2 We know that the-Frobenius verifies

o2 — [tlpg + g =0 in End(E).

Thatis,VP € E(F,) (and in particulat/P € E[l]):

[tlpy(P) = ©2(P) + [g(P)  inE.

Let go = ¢ (mod [). Since for everyP € E|[l], [n]P = [n (mod [)]P, we can findt
(mod 1) by checking whether

ilpg =2 +[a]  onEll]

for:=0,...,1— 1. This can be done efficiently using polynomials, but to doétweed a
polynomial which characterizes ti¢orsion points of£/(IF,). We have

Elll={P€E[F,):P+...+ P=0}27/IZ x Z]1Z.

ltimes
There exists polynomials, calletivision polynomials¥,;(X) € F,[X] such that'z € F,:
Uy(r) =0 < Jy € F, s.t. (x,y) € E[l].
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Since#E|[l] = I?, there exisi?> — 1 non-zero points irE[l]; moreover

(x,9) € Ell] = (z,~y) € B[l
so there exist;! o € T, such thalz, y) € E[l] for somey € F,. Thusdeg ¥;(X) = 51,
We can comput@, (X)) using recursively the formulas to add points®B(TF, ). For instance,

let/ = 3 and letP = (x,y) € E(F,):

P € E[3] P+P+P=0
P+P=-P

(z,y) + (z,y) = (z, —y)

(—%&%<&22A>2,”):(%”)

(we can neglect th&-coordinate, since eacki-coordinate identifies
a unique point "modulo the opposite”)

<3x2 + A>2
r = —2z+
2y

127y* = (32° + A)?
(y* = 2* + Az + B, because” € E(F,))
3zt + 6Ax* + 12Bx — A =0
thatisU(X) = 3X* + 64X? + 12BX — A%
Sowe have, foi =0,...,] —1:
[ilJpg = 5 +[a0]  In B[]

T
(XY = (X, YY)+ [o)(X,Y)  inR:=F,[X]/(¥,(X),Y?— X> - AX — B)
(with + the addition onF).

Since the elements dk have size? log ¢, the amount of work to check whethgty, =
@2+ [qo] In E[l] is:

P 1t

[

!

e to computei] (X, Y4): O(I(I*log ¢)");
e to compute( X7, Y") + [qo](X,Y): O(log q(1*log q)* + I(I* log q)").

But! < log g, so the total amount of work to computeF (F,) (mod ) is O(log ¢'+3#).

We have to do it for every prime< log ¢, thus the amount of work involved in Schoof’s algorithm
is

O(log ¢**"),
with 1 < p < 2 (in particular it isO(log ¢®) if we use standard multiplications arf@(log ¢°)
if we use fast multiplications). Schoof’s algorithm is tefare a deterministic polynomial time
algorithm, but in practice its behavior is not so good beedahs size of the elements &fis too
large. We conclude presenting briefly two practical improeats of the Schoof’s algorithm.
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7.2 Atkin’s algorithms

As before, letE/F, be an elliptic curve. For every prinie# p = char(F,), there exists a universal
polynomial, calledmodular polynomial ®,(S,T") € Z[S,T] such that for every morphism of
elliptic curvesf : £, — FE5 of degred

Py(j(E1),j(E2)) = 0.
Foe every, we have:
o O/(S,T)is symmetric:®,(S,T) = &,(T,95);
o degs ®)(S,T) =1+ 1.

Naively, Atkin’s idea is to reducé,(j(E),T) € F,[T] as product of irreducible polynomials and,
from their degrees, deduce partial informationtofmod [).

7.3 Elkies’s algorithm

Elkies'’s idea is to use a divisdf(X) of ¥;(X) of small degree, instead df;(X) itself.
Suppose thap, acts onE|[l] in such a way that it fixes a subgrodpof order!. Then3\ €
{1,...,1—1} such that:
0,(P) = [\P VP e C.

As E/[l] is defined by the polynomia¥,;(X) (i.e. the zeros ofV;(X) are theX-coordinates of the
points in £/]), such eigenspad@ can be defined by a polynomial(X) € F,[X] which is such
that:

¢ the zeros off'(X) are theX-coordinates of the points ifi;
o F(X)|¥,(X),sinceC C El];

e deg F(X) = &1, since inC there ard — 1 non-zero points and eacti-coordinate corre-
sponds to two points.

The characteristic polynomial @f, is X — tX + ¢, so the product of its eigenvalues is equal
to ¢ and the sum is equal to It implies

t=X+¢/A (modl).

Thus, to compute (mod /), it is enough to find the eigenvalue of ¢, corresponding to the
eigenspacé€’. This can be easily done by checking whetherifer1, ..., — 1

po(P) =[P VP =(z,y)eC
)
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(X9,Y9) =[i|(X,Y) inR :=F/[X]/(F(X),Y?-X*— AX — B).

SinceF(X) has degreé;* (while ¥,(X) has degreéz’;—l), the element o’ have siz€ log q.
So the amount of work to computé&?, Y9) in R’ is O(I(Ilog q)*) = O(log ¢'").

To conclude, we remark that Elkies’s idea only works for m&hfor which theg-Frobenius
acting onE[l] has its eigenvalues i /IZ, which are abou50%.
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Lecture 9. The Algorithms of Lenstra and Goldwasser-Kilian-Atki

Lecturer: Red Schoof Scribe: John Voight

Today we will talk about two algorithms. The first is Lensgralliptic curve factoring method
(ECM), and the second is the primality testing algorithm ofdB@sser-Kilian-Atkin.

9.1 Lenstra’s algorithm

Recall the oldp — 1 factoring method due to Pollard. Lete Z-, be the integer to be factored.
First we choose a boundd € Z.., and precompute

M = H q° =~ exp(B).
q°<B
gprime
Next, we pickz € (Z/nZ)* at random. Then we computé! (mod n), and letd = ged(z* —
L, n).

Thend | n, and one hopes thdt> 1, i.e., there exists a primedividing d, which holds if and
only if 2 =1 (mod p). In practice, one succeeds with this approach whenl | M, i.e.,p— 1
is B-smooth so that all primeg which dividesp — 1 are< B. (Usually,z™ # 1 (mod p), so
whend # 1 we almost never haveé = n.)

Here, we have — 1 = #(Z/pZ)*, andz™ = 1in (Z/pZ)*. The computation is essentially a
group-theoretic one, so it makes sense to look for otherpggrothere this general approach may
work. We replace the multiplicative group by an elliptic ver We choose&3 and computel/ as
before.

Next, we pick an elliptic curve ovef /nZ. Note thatZ/nZ is not a field, so we have not
even defined what this means! We take the lazy way out and dafirgdliptic curve ovefZ /nZ
to be defined by a Weierstrass equatioh = X3 + AX + B with A, B € Z/nZ with A =
—16(4 A% + 27B?) is invertible inZ/nZ, i.e.,gcd(4A3 + 27B% n) = 1. In particular, ifp | nis a
prime divisor, thert’? = X3 + AX + B considered modulp is a genuine elliptic curve, so this
is a natural generalization. The same formulas for adddioan elliptic curve hold (the subtleties
here exactly lead to the factoring algorithm!); the zeravedat is again the poirfd) : 1 : 0).

[For any ring R, one can make sense of an elliptic curve o¥r In particular, an elliptic
curve overZ/nZ with n = pg may be thought of as a product of elliptic curves o¥%gpZ and
overZ/qZ. One can also work with projective coordinates o¥gnZ; and then we define the
projective plane oveZ/nZ to be the set of triple$x : y : z), up to rescaling by elements of
(Z/nZ)*, satisfyingged(z, v, z,n) = 1.]

Now, pick an elliptic curvel) : Y? = X3 + AX + B, pick P € E(Z/nZ), and compute
MP =P+ ---+ Pin E(Z/nZ). Now we have to check whether for some primave have the

M
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analogue of:™ =1 (mod p), thatis,M P is the neutral element module so thatp | n, and then
usually M P is not the neutral element modulo the other primes divigingn this situation, we
can also factor.

To show how this works, we will do a “Mickey mouse” example. Wal factor 35. Let
E:Y?=X3—X—2. We haveA = —16(4(—1) +27(4)) which haszcd(A, 35) = 1. We choose
P = (2,2) a ‘random’ point, and choos¥ = 3. We computel/ P = 3P. We first compute

2P = P+ P = (z3,5) = (-2 =2+ (322 = 1)*/(2 - 2)2, ) = (—4+ (11/4)%,3s) = (=3,3).

And then

3P=2P+P=(-3,3)+(2,2)=(3—-2+(2-3)%/(2+3)%,..)
which causes a disaster, sineés not invertible modul®5; and computingsed(5,35) = 5 | 35,
and thus we have factor&d! The ‘problem’is that —3, 3) = (2, —2) = —(2,2) (mod 5), so our
formulas do not apply, and by using the inappropriate foemve discover a factor.

To pick a point onZ, if we were working over a field we would pick a randaruntil 23 +
Ax+ Bis asquare, and then we compute a square root. But computiugaeesroot is notoriously
difficult modulo a nonsquare (given an oracle that computgsie roots, one can facte), so
we reverse the steps; first we pick a randomy) and a random¥, then take the curv&? =
X3+ AX + Bwith B = y* — 23 — Az. (In fact, it is enough to choose randdmy).)

In the classical case, we had succeg$(iZ./pZ)* = p — 1 is B-smooth. Now we have success
if #E(Z/pZ) is B-smooth for some primg | n (and notB-smooth for other primeg | n). Then,
MP = oo (mod p) andMP # oo (mod q) for p # q | n. If m = #E(Z/pZ), then by group
theory,m P = oo, and indeed\/ P = oo (almost in practice) if and only ifn | M = [ ._p ¢° if
and only if M is B-smooth.

Note that if we do not succeed, we can simply throw awegnd choose another curve! (In the
classical case, the game was over.) So we wait for a “goodfegure., a curve with#:E(Z/pZ)
B-smooth for some | n. [One desperately hopes th&t(Z/pZ) is B-smooth for some choice
of E; it will almost never happen in practice th&t='(7Z/qZ) will be B-smooth for other primes
q|n]

To reiterate, the algorithm runs as follows. The input isithegern € Z- to be factored. We
chooseB and precomputd/ = qu<B q°. We repeat: pick a randotR on a randon¥(Z/nZ),
and computel/ P until one cannot invert a denominator, and then stop withditisor produced
by this failed inversion.

Now the question is: How many times do we repeat in the loop?06&d, B € Z/nZ at
random givingE : Y? = X3 + AX + B, and usuallyged(A, n) = 1 (otherwise we are happy
anyway). Letp be (the smallest) prime divisor ef We analyze how much work it takes to fipd
i.e., when doe€’(Z/pZ) have B-smooth order? What is essential for the success of this metho
is that when the elliptic curves vary, so do the group ordBrsking objects at random moduto
gives objects which are random moduloso we do the analysis there.

There are? ‘choices’ for an elliptic curve” modulop, and so we ask, how are they distributed
with respect to# £(Z/pZ)? Well, this order lies in the intervap + 1 — 2,/p,p + 1 + 2,/p), and
very roughly,

#{(a,b) : E:Y?>= X+ AX + B hasp + 1 — t points} = gH(tQ —4p) & 2£\/4p—t2.
T
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where H (d) is the class number of the order of discrimindn& 0. This approximation is very
rough, and gives roughly ‘an ellipse’: there are approxetyadn even number around the middle,
with fewer at the ends, subject to very chaotic behavior.

If we pretend that the values are equidistributed in therwale then picking a random curve
corresponds to picking a random integer in the rafgge 1 — 2,/p,p + 1 + 2,/p). So the key
guestion is: what is the probability that such a random ieitég B-smooth? Define € R, as
B = p'/*. Then the probability ig /u*, so we need to try* curves, and the work for each curve
is to computeM P whereM = exp(B) soO(B) = O(p'/*), so the total work i) (u"p'/*). To
optimize, if B is very big one does a huge amount of work to comput@; if B is very small,
then by smoothness one must repeat many, many curves. Wagus, we find the optimum at

2logp
u =
log log p

@) (exp(\/2 log plog logp)) :

Lenstra’s algorithmprobably finds small prime factorg first, which is a unique feature of
this algorithm. This is good for factoring numbers that yaudfiin the street’; but the worst
case is for RSA numbers which are = pq the product of two prime9, ¢; then the time is

O(exp(v/lognloglogn)).

so we must do the work

9.2 Goldwasser-Kilian-Atkin’s algorithm

Recall Pocklington’s criterion. Let be an integer which is to be proved prime. Write 1 = QR
with @, R € Z-,. Suppose that for all primeg| @, there exista € (Z/nZ)* satisfying

a?=1 (mod n)andged(a®/? —1,n) = 1.

Thena has ordeg™ || n — 1 modulo everyp | n, so for allp | n we havep = 1 (mod Q), soin
particularp > @, so if @ > /n, thenn is prime.

Note that one doesotneed® | (n — 1); in practice, one needs this, but the statement does not
depend on it. We do, however, need thais completely factored.

We now replace this by the ‘elliptic version’. We look at ptic curves modula; recall that
after running many compositeness tests we can be almoatirctratn is prime, but we would like
a proof.

The translation of Pocklington’s criterion reads as fobowChoose an elliptic curvé over
Z/nZ. Suppose we have an intedg@rc Z-. If for all ¢ | Q there exists® € E(Z/nZ) such that

QP =00 (modn)and(Q/q)P # oo (mod p)foranyp | n.

[One can check the latter condition by using homogeneousigtaies and computing?/q) P =
(x : y : z) and then check ifcd(z,n) = 1.] Then P has ordery™ in E(Z/pZ), and taking
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the product we find tha®) | #FE(Z/pZ) for all p | n, soQ < (v/p+1)* =~ p. Therefore, if
Q > (/n + 1)?, then we can conclude thatis prime.

We use in practice tha# £(Z/nZ) = QQR; what one needs in practice the complete factoriza-
tion of Q. Morally, # FE(Z/nZ) =~ p, so one will almost succeed in finding such a sufficientlydarg
factoredq.

The idea of Goldwasser-Kilian: sometimes it will happent tRawill be a probable prime.
Then switch the roles ap, R, exactly as we did with the Pocklington test. We have thewgmo
that “if Ris prime, then is prime”. The profit is that again we can vary the curve anawhaway
a curve that does not work; so by the prime number theorem,esd to try approximatelivg n
curves to haveR to be a probable prime (with algp > 2; in practice,() may be much larger).

To summarize: Let be the integer which is to be proved prime. First try to facter1 = QR
for @) small andR a probable prime. (This will almost never happen; so makg arsimall effort.)
Now repeat the following loop: pick an elliptic cunfeat random, computg FE(Z/nZ), and hope
that# FE(Z/nZ) = QR with ) completely factored an& a probable prime; if not, throw away
and return. If success, then start over witlin place ofn.

The important issue to discuss is computing the ofgl8YZ /nZ). In the asymptotic analysis,
Goldwasser-Kilian use Schoof’s algorithm; in practicastis too slow. Atkin uses CM elliptic
curves and reduces them modulo if £ has CM byZ[v/d] with d < 0, then one can reduce
overZ/nZ with n = z? — dy* (which can be done very quickly using lattice reductiongrth
#FE(Z/nZ) = (x + 1) — dy®. The analysis here is shaky, but in practice it works very.wel

This algorithm holds world records for primality proving(fhumbers without a special form):
in July 2007,(2%277 + 1) /3 was proved prime.
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Lecture 10. Elliptic Curves ovep

Lecturer: Henri Darmon Scribe: Matei David

10.1 Introduction

In our lectures so far, we have considered elliptic curves bwite fieldsF,» and their applications
to computing. Today, we consider elliptic curves over th&df@ rational numberg) and the
applications of computing to answering questions about sucves.

In general, an elliptic curvé& over a fieldk is given by the Weierstrass equation

E:y"=2"+A-2+ B,

with A, B € k (when6 # 0 in k.) The discriminant of this curve i& = 443 + 27B? # 0. As
before, we denote by (k) the set of points with coordinates knthat are on the curvé&, i.e.,
that satisfy the equation definirfg, plus the point “at infinity”,(co, co). We have seen before that
there exists an addition operation on this set making it agro

We will be concerned with the following two problems.

A Make a list of all elliptic curves ove®).

B Given a fixed elliptic curve® (by its Weierstrass equation), compuéQ).

10.2 Basic Remarks

10.2.1 On problem A

When it comes to listing all elliptic curves ovép, we have previously seen in lecture 4 that
the notion ofj-invariant gives a bijection between the set of all elliptierves overQ (up to
isomorphism) and the underlying fie@ It turns out, thej-invariant is not a good measure of the
“arithmetic complexity” of an elliptic curve. Instead, weuld try to use its discriminanh.

We can assume WLOG that the coefficieAtsB defining the curve are integers, otherwise we
can change the equation obtaining the same curve. ThenjgtntdnantA is also an integer.
(Note, if p is a prime and 1 A, thenE mod p is still an elliptic curve.) To make a list of all
elliptic curves, we can ask questions of the form: are thiiggie curves with discriminant\ = 1?
That s, are there integers B such thattA® + 2782 = 1? In this particular case, the answer is no.
Continuing in this way, we would hope to list all elliptic cew by listing all curves with a given
discriminant.

However, we will work with the notion o€onductorinstead, which is a better measure of the
arithmetic complexity oft.
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Definition 4. The conductotVg of an elliptic curveE overQ is defined to be

NE - H p6p7

p prime
whered, is a function ofp and £, anddé, € {0, 1,2} for p > 3.

Whenp 1 A, §, = 0, soNg is divisible by the same primes @ Whenp | A, §, € {1,2}
depending on whether the equation definftignas a triple or a double root. Fpr= 2,3, ¢, is
computed using another recipee (Tate’s algorithm), whielowmit.

Thus, we can rephrase problem A as follows: givénlist all elliptic curves (up to isomor-
phism) with conductorV. Lete(N) denote the number of such curves. We know t{af) = 0
for N < 11, e(11) = 3, e(12) = e(13) = 0, e(14) = 6 and so on. There exist tables computing
e(N) for N up to 130000. In this lecture, we will touch upon the math Imed in building these
tables.

10.2.2 On problem B

Given an elliptic curver, we want to computé&(Q), the group of rational points ofi. Unlike the
case for finite fields, there is no reason fofQ) to be finite. However, one of the most important
theorems in the study of elliptic curves over the rationtd$es that this group is finitely generated.

Theorem 4 (Mordell, 1923) E(Q) is a finitely generated abelian group. That is, there exist
points Py, ..., P, with rational coordinates such that every elementf((Q) can be written as
n1P1—I—---—i—nTPTWithnl,...,nr € 7.

Definition 5. The valuer in the Theorem above is call¢lde rank ofE overQ.
Thus, problem B reduces to the following subproblems. Gamelliptic curvel,
1. find the rank- of £ overQ; and

2. find P, = (x1,11), ..., P. = (x,,y,) that generat& (Q).

Even for simple curves, the generatdfscan be very large in terms of space, so the naive
approach of ranging overwhile looking for points on¥ is not adequate.

10.3 Modularity

In what follows, we investigate the connection betweempgdicurves over the rationals antbd-
ular forms

Given an elliptic curveE over Q and a primep not dividing Ng, E is still an elliptic curve
overF,. Let N, = #E(F,) be the number of points o over the finite fieldF,. Furthermore,
definea, = p + 1 — N,,.. This way, we associated with the curizea sequenceéa,,) for primesp
not dividing Ng. In what follows, we will be interested in the structure akteequence. As a first
step in our analysis, we will extend the sequepce a, to a sequence over all positive integers
n — Q.
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step 1. for primegp dividing N, we definez, as one of 0, 1, —1} according to the nodal singularity
of p.

step 2. for all primeg, definea,» = a,a,n-1 — pay.-+ whenp { Ng, anda,» = a;; whenp | Ng.
step 3. in general, defing,,,, = a,,a,, whenged(m,n) = 1.

Thus, givenE, we can construct the sequeneg, as, ... ). A natural question to ask is, how
much information abouk is lost in this mapping. That is, givei,,),>1, can one retrievé&? The
following result answers this question.

Theorem 5. Two curvesE,, E, generate the same sequerieg),>; iff there exists a morphism
¢ : E, — FEy with finite kernel.

Proof sketch.For the “<=" direction, fix a morphismp betweenF; and F;. If ¢ has finite kernel,
¢ is, in general, neither injective nor surjective. To shoeytiyenerate the same sequeqicg,>1,
we must show that for all primes we have#FE, (F,) = #E»(F,). Then, the extended sequences
will be the same.

Let ! be a prime not dividing#Ker(¢), and consider the induced mapping E[l|(F,) —
E,[l)(F,). It can be shown that the Frobenius map on the left is mapp#tetErobenius map on
the right, and therefore, thatE, (F,) = #E»(F,) mod [. Since this holds for all not dividing
#Ker(¢) (which is a finite number), the equality holds for infinitelyany /, thus we must have
# L (Fp) = #E5(Fp).

Note: if ¢ is a mapE, — FE,, then¢" is a mapk, — Ej.

The “<” direction is much harder. Faltings in 1985 showed how tostarct ¢ when two
elliptic curves generate the same sequgngg,>. O

Note: In the PARI programming language, the functaorel | can be used to compute the
first values of thei-sequence associated with a given elliptic curve.

We have seen how to associate to each elliptic cé#\en a-sequencéa,,),>1. We can use
Theorem 5 above to list all curves with the samsequence. Thus, to solve problem A (listing all
elliptic curves over the rationals), it is enough to classrhich a-sequences can be obtained from
such curves. To this end, we consider several ways of pacdnrgsequence into a generating
series.

Definition 6. Given an elliptic curveE' over Q, let (a,),>1 be its associated-sequence. The
Taylor series off is defined to be

fE(q> = Zan ’ qn;
n=1

and the Dirichelet series of is defined to be

> a
LE(S) = _n'
n=1 ne
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We also define the shifted Taylor seriestofo be

fo(7) = fo(e™).

One can show that the Taylor series converges on the opediskijtthe shifted Taylor series
converges on the open halfplane defined by-djm> 0, and the Dirichelet series converges on the
open half-plane defined by Rg > g (for the latter, we need to use boundsagh

Consider the special linear groupi 2 integer matrices with determinant equal to 1

SLQ(Z):{(CCL 2) : a,b7c,d€Zanda-d—b-c:1}.

This group acts on the set of complex numb&rs= {z : Im(z) > 0} by
a b ;8T +b
ﬁ .
c d c-T+d

PO(N):{<i 2) € SLy(Z) N|c}

The following theorem was the last piece in the proof of Feisriaast Theorem.

Let us define

Theorem 6 (Wiles, 1994) Take an elliptic curvels over Q, with conductorNg. The Taylor
generating seriegg(7) is @ modular form of weight 2 on the grolip(/Ng), satisfying

@) fz (4t2) = (er + d) fp(7) for all ( CCL Z ) € I'o(Ng); and

(b) a certain behaviour at the boundary, which we omit.

11
Note that( 01

) € T'o(Ng), but the fact thaff; (7 + 1) = fz(7) is not deep because of the

periodicity offE. However, also note th% ];E (1) ) € I'g(Ng). The proof thath(w) =

(NgT + 1) f5(7) is over 200 pages long.

The reason we have chosen to introduce modular forms is beqgaablems A and B are hard
when dealing with elliptic curves directly, but they becomach easier in the world of modular
forms.

10.3.1 On problem A

By Theorems 5 and 6, the problem of listing all elliptic curwa®r the rationals reduces to the
problem of listing alla-sequences coming from modular forms of weight 2g@V), for increas-
ing conductorV.

Let My be the set of all modular forms of weight 2. Then,
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(a) My is a vector space ovét;
(b) My is finite dimensional (from the analogue of the Riemann Hyesit).

(c) My is equipped with a natural collection of operators, callextké operators, indexed by
integers. Initially, they are defined only on primes, buttban be extended to all integers
as in the case af-sequences. We only give two equivalent definitions for thgeovherp
does not divideV:

L T,J = (L)) = pf 7) + 1 05 1 (75 )sor
2 Tf = (T,()(@) = 2, and™” + 3 ang®™

It can be shown thdf, preserves the space of modular forms, and that the two defisit
above are equivalent.

(d) My has a basis consisting of eigenvectors for all the operdters

It turns out tha!fE, the Taylor series associated with the elliptic cubvis in fact an eigenvector
for Ty (normalized, so that; = 1). This allows us to give a linear algebra characterizatibn o
sequences$a,). Thus, computingl/y is equivalent to computing its eigenvectors. Moreover, if
f =>"a,q" is an eigenfunction i/, thenTy(f) = ay f (seen using definitions 1 or 2 @iy).
Therefore, it is enough to compute the eigenvalu€g\of

Theorem 7. There exists a vector spaég of modular symbolsuch that

(&) Viy can be described in an explicit combinatorial way and it isipged with an action of
linear operatorsi;,, that are described by rational matrices; and

(b) there exists an isomorphism betwaénand My that respects Hecke operators.

The reason for introduciny is that it is hard to use restrictions on infinite series frofg,
while all treatment ofl/y involves finite linear algebra operations, plus the isorhmm between
these vector spaces preserves Hecke operators.

The list of all elliptic curves for conductors up f§ < 200 was given by Antwerp in 1972.
Today, there exist lists of all curves with conductor up t0Qa0.

This completes our treatment of problem A.

10.3.2 On problem B

We now turn to problem B, which is, to compui§Q). As we have seen before, this group is
finitely generated by independent points, whereis the rank of ¥ over Q. Thus, our task is,
given F, to findr and a set of generators.

The work of Birch and Swinnerton-Dyer in the 60s was based endba that the rank of
E(Q) should be related to the behaviour of the quantitiggthe cardinality of£ (F,)) asp — oc.
Numerical experiments led to the following conjecture.
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Conjecture 2 (BSD). Hp@ % — Cg - (logz)" asx — oo, whereCy is a constant depending
only on the curver.

An interpretation of this conjecture is that, as wefiband varyp, the distribution of cardinal-
ities IV, “knows about” the rank of E overQ.

We can rephrase this conjecture in terms of theinction of £. Let V be the conductor oF
and recall thaty, = p + 1 — N,,. We can write

Lp(s) =[] —ap+p ) T[Q = app™)™

ptN ptN

Note, L can be rewritten as the Dirichelet series seen before, a,,/n°. In fact, this equivalence
provides thedefinitionfor a,, whenn is not a prime. -

Evaluating the serie®rmally at s = 1 (note that it only converges for Re > 3/2), we get
Lgp(1) =TI, NL,, which is the quantity in the BSD Conjecture 2. The existencaroénalytic

continuation ofL i (s) was a long-standing open problem, but the following Thedi@hows from
the work of Wiles.

Theorem 8 (Hecke) If fx is a modular form (and by Wiles's Theorem, it is), theg(s) has an
analytic continuation to alls € C, and it satisfies a functional equation of the form(s) =
+Ag(2 — 5), whereAg(s) = (2m) " N*/?I'(s) Lg(s).

In light of this Theorem, the modern reformulation of the BSDh{eature 2 is

Conjecture 3 (BSD, modern reformulation)The order of vanishing af z(s) at s = 1 equals the
rank r of the elliptic curveF overQ.

This is Conjecture is a Clay Institute Millenium Prize problefhe work of Gross-Zagier
and Kolyvagin establishes thét the order of vanishing of.x(s) ats = 1 is at most 1,then

Conjecture 3 is true, and there exists an efficient methoddioutating £(Q).
Another Conjecture about the rank of elliptic curves is

Conjecture 4. The sequencérg } g, wherer is the rank of the curvé’ overQ, is unbounded.

Currently, we know of curves with rank up to 28.

10.4 The Fun Stuff

Last but not least, we touch upon the proof of the famous Téraor

Theorem 9(Fermat’s Last Theorem)he equationr”+3" = 2" has no non-zero integer solutions
whenn > 2.
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As a basic observation, one can easily show that it is enauglotre the Theorem whenis a
prime, henceforth called We assume that there existh, ¢ a nontrivial solution to the equation,
so thata! + b! = ¢!. Frey had the idea to associate with this solution the @lipirve

E:Y?=X(X —d)(X +b.

It can be verified that the discriminant of this curveAs = 2'2(abc)?, and that the equation
defining the curve might have a double root, but never a triptg. As a consequence, we have
that N = Hp|Ap, that is, the conductor of the elliptic curve above is sqgtiege. We see thaV is
very small relative tQ\.

From this point on, the idea is to look at the grofff] of torsion points. Thei-sequence
associated td[l] is simply thea-sequence of the curvE, modulo!. That is, if (a,),>; is the
a-sequence of the curg, then(a,, mod 1),> is thea-sequence of the curvg[l]. Furthermore,
the conductor of the curvi([l], Ngy = 2.

Theorem 10(Ribet) If the a-sequence attached # is modular of levelV, then thea-sequence
attached toE/[l] corresponds to the reductiofmod ) of an a-sequence of an elementin the
space of modular forma/, of level Ng; = 2 and weight 2.

The punchline is that it is trivial to show that there are nadular forms of weight 2 and level
2, which in turn provides the contradiction to the assumptltat a non-trivial solution exists to
Fermat's equation.
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