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Machine learning:
some remarkable successes
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The next step:

Some things we can’t do yet
* Learn how to act optimally without
access to a simulator

Difficult cows
* Based on observational data

* Unsupervised domain adapatation

* Eg: classify images in a-priori
unknown contexts

= t
* My research is often motivated by
problems in healthcare, where both
subjects come up
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* Testing state-of-the-art deep learning models for COVID-19 detection
e Sharp drop in performance across hospitals and datasets

* Turns out the models often rely on spurious features outside the lungs

e E.g.: Laterality markers, presence of shoulder region,
known to be clinically irrelevant for COVID-19



Out-of-Domain (OOD) Generalization

e X: features, Y: label (usually discrete)
* Source distributions Pg, (X,Y)

* Learn model that works well on
unknown Target distributions
P'(X,Y)€eQ

« We allow P'(X,Y) to
change in certain ways relative to
Ps (X,Y)

(defined via causal graphs)
* Including changes to P’ (Y |X)

e Our approach relies on possible
multi-environment calibration targets Q
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Formalizing OOD and spurious correlations

* Causal graph encoding assumptions ==
about how target domain can differ

from source (train) domains / \

* Example:
E: hospital causal — Y — Xac spurious

Y: disease

Xcausal: Patient demographics
Xac—non—spurious: disease pixels”
Xac—spurious: Pixels caused by
hospital specific imaging setup

X ac-non-spurious

* We don’t know a-priori which is which
* Note no arrow from E to Y'!

* At test time we observe a new environment £ = ¢, e € £
(do(E = e) for previously unseen value e)



Spurious-free representations

* Causal graph encoding assumptions P — -
about how target domain can differ B

I
I
from source (train) domains / -

* Example:

E: hospital Xcausal — Y — Xac-spurious
Y: disease

Xcausal: Patient demographics \ %{ |
Xac—non-spurious: disease pixels” ac-non-spurious
Xac—spurious: Pixels caused by @

hospital specific imaging setup
* We don’t know a-priori which is which Representation
* Note no arrow from E to Y'!

* At test time we observe a new environment £ = ¢, e € £
(do(E = e) for previously unseen value e)



Formalizing spuriousness

* Models using spurious features

can incur arbitrarily high risk when
test is previously unseen / \
environment E = e
: causal — Y — Xac spurious
* The problem occures when using .

Xac—spurious (Collider)

* and when not using X:ayusal \® ‘;/

X ac-non-spurious

A representation ®(x) Representation
has spurious correlatons

w.r.t.toY and E if
YAE|D(x)




Formalizing spuriousness

* The problem occures when

using Xac—spurious
e Collider!

* Shares the spirit of Invariant Xeawsal —'Y — )(ac spurious
Causal Prediction (ICP) (Peters

et al. 16) and Invariant Risk
Minimization (IRM)
(Arjovsky et al. 19)

X ac-non-spurious

\@.}

A representation ®(x) Representation
has spurious correlatons

w.r.t.toY and E if
YAE|D(x)




Optimizing for stability

* Assume we have access to samples / \
from multiplee € E

* How can we learn an informative causal — Y — Xac spurious
representation ®(x) such that .
YLE|D(x)?
(no spurious correlations) X ac-non-spurious
* Seems like a difficult optimization ”
problem

* We show this is equivalent to a more
approachable problem:
Multi-environment Calibration

A representation ®(x)
has spurious correlatons

* Allows us to adapt a huge set of :
pre-existing tools from the calibration w.rt.to ¥ and £ if

literature YHE|D(x)




Calibration
* A classifier f: X — [0,1] is calibrated if E[Y|f(X)] = f(x)
* Calibration: probabilities of events match predictions



Calibration
* A classifier f: X — [0,1] is calibrated if E[Y|f(X)] = f(x)
* Calibration: probabilities of events match predictions
 f(x): probability of tumor

Patients
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i1
b

f(x) =0.9
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Calibration
* A classifier f: X — [0,1] is calibrated if E[Y|f(X)] = f(x)
* Calibration: probabilities of events match predictions
 f(x): probability of tumor

Patients
e O

f(x) =0.9

N

b

* Calibration: 90% of patients with prediction 0.9 indeed have tumor



Multi Environment Calibration
* A classifier f: X — [0,1] is calibrated if E[Y|f(X)] = f(x)
* Calibration: probabilities of events match predictions

* f(x): probability of tumor
Hospital A Hospital B




Calibration
* A classifier f: X — [0,1] is calibrated if E[Y|f(X)] = f(x)
* Calibration: probabilities of events match predictions

* f(x): probability of tumor
Hospital A Hospital B

* Calibration: 90% of patients with prediction 0.9 indeed have tumor



Calibration
* A classifier f: X — [0,1] is calibrated if E[Y|f(X)] = f(x)
* Calibration: probabilities of events match predictions

* f(x): probability of tumor
Hospital A Hospltal B

ﬂ‘

May be a sign of
model instability!

True probability: 1

‘ Diagnosed with illness True probability: 0.8

Diagnosed not ill



Calibration
* A classifier f: X — [0,1] is calibrated if E[Y|f(X)] = f(x)
* Calibration: probabilities of events match predictions

* f(x): probability of tumor
Hospital A Hospltal B

ﬂ‘

Encouraging sign
for stability

Q’rue probability: 0.9

‘ Diagnosed with illness True probability: 0.9

Diagnosed not ill



Invariance on Training Environments E¢4in

* Consider the representation ®(x) = f(x), where f(x) is a binary classifier

* Avoid spurious correlations by enforcing YLE|f (x) on training
environments Ety4in

* Let us call such classifiers invariant classifiers.

Definition. Ler f : X — [0, 1], it is an invariant classifier w.r.t Eyqn if for all o« € [0,1] and
environments €;,e; € Ejqin where « is in the range of f restricted to each of them:

EY | f(X)=a,E=¢|=E[Y | f(X) =0, FE = ¢4



Calibration on Training Environments E¢,-4in

* Seemingly unrelated to spurious correlations

* We are interested in calibration on all training environments simultaneously

Definition. Ler f : X — [0,1] and P|X,Y| be a joint distribution over the features and label. Then
f(x) is calibrated w.r.t to P if for all o € [0, 1] in the range of f:

EplY | f(X) =qa] = a.

In the multiple environments setting, f(X) is calibrated on Eyq, if for all e; € Eygi and o in the
range of f restricted to e;:

ElY | f(X)=a,FE=¢] =a.



Invariance and Calibration on E¢.i,

Invariance:
YLE|f(x)

Calibration:

E[Y|f(x)] = f(x)]




Invariance and Calibration on E¢.i,

Invariance: Calibration:
YLE|f (x) E[Y|f(x)] = f(x)]
Lemma

If a binary classifier f is invariant w.r.t E¢,.,i,, then there exists a function
g:10,1] = [0,1] such that:

(i) g © f is calibrated on all training environments, and

(ii) the MISE of g o f on each environment does not exceed that of f




Invariance and Calibration on E¢.i,

Invariance: —~ Calibration:
YLE|f (%) — E[YIf ()] = f(2)]
Lemma

If a binary classifier f is invariant w.r.t E¢,.,i,, then there exists a function
g:10,1] = [0,1] such that:

(i) g © f is calibrated on all training environments, and

(ii) the MISE of g o f on each environment does not exceed that of f

Conversely, if a classifier is calibrated on all training environments,
it is invariant w.r.t. E¢rqin




Invariance and Calibration on E¢.i,

Lemma

If a binary classifier f is invariant w.r.t E¢.,;, then there exists a function
g:10,1] = [0,1] such that:

(i) g o f is calibrated on all training environments, and

(ii) the MISE of g o f on each environment does not exceed that of f

Conversely, if a classifier is calibrated on all training environments,
it is invariant w.r.t. E¢rqin

e Similar to invariant representations of Invariant Risk Minimization (IRM) [Arjovsky 19],
yet with several differences:

e Calibration does not involve optimality with respect to a specific loss function:
IRM results in invariant classifier only when applied with logistic or squared loss

e |RM cannot be effectively optimized, while more tractable IRMv1 does not guarantee
invariances (Kamath et al. 2021)

e We show multi-domain calibration correctly identfies Kamath et al. 2021 invariances



Questions of Interest

* Generalization: assume f(x) is calibrated on all E;,4in, ,
when does it imply calibration on £ ?

* Spurious correlations: what can we formally claim about a calibrated
classifier’s use of Xy¢_spurious?



Simplified Settings: Linear-Gaussian Models

* We consider settings with features generated from multivariate
Gaussians

* Each environment parameterized by mean vectors and
covariance matrices, € = {(i, 2)|u € R?,X € PSD 4y 4}

* Two scenarios:



Classification with Invariant and Spurious Features

E;qin consists of £ training environments -

Yy LB
* Dimension of spurious features is dsp, N\ l
Xac-ns X’dC-Sp

For each environment (1, %), data is generated by:

) = 1 w.pn Xac-ns | Y=y~ N(yun& zns>7
—1 ow Xac-sp | Y = Yy~ N(yuza Zz)

Learn linear classifier f(x) = o(w'x +b), where o : R%r*d= 5 [0, 1] invertible

Theorem: given k¥ > 2ds;, training environments, under mild non-degeneracy
conditions* any classifier that is calibrated on Etrain has weights zero on Xac-sp

*a general position assumption (pi, 234)



Regression with Covariate Shift and Spurious Features

* Similar setting, but for regression with causal features i

* Dimensions of features are d., dsp, / \
X.—/™Y > X

7 <Yac-sp

* For each environment (15, X7, 14, 2;) data is generated by:
XCNN(:LLZC7Z§) Y:W:TXC+§7 gNN<O,U§) Xac—sp:yui+777 nNN(Oazz)

* Theorem: given k > max{d. + 2,ds} training environments, under mild non-
degeneracy conditions the only multi-environment calibrated predictor is

fH(x) = WZTXC



Conclusions from Motivating Examples

* In simple cases, calibration across training domains:
* Discards Xac—spurious

* Achieves OOD calibration if number of environments is linear in number of
features

* Here calibration = discarding Xac-spurious = bounded worst-case risk
* This is not trivial for non-linear models, calls for further analysis

* Theory - Practice?



Tools for Calibration

* Calibration Plots visual representation of calibration in binary

problems

* |0,1] interval divided to B bins, f(x) placed into appropriate bin
* Average confidence in each bin plotted against accuracy.

* ECE Score

* Scalar summary of the curve, averaging
deviations from diagonal

B
np
ECE = z ﬁlacc(b) — co
b=1

acc(b) is mean number of errors in bin b
conf (b) is mean of f(x) in bin b

1.0

o
)

Fraction of Positives
o
~

o
N

Calibration plot example

— Model outputs
- Perfectly calibrated

o
o

o
'dj
N
\
N

0.2 0.4 0.6
Mean Predicted Value

0.8

1.0



Achieving OOD generalization via improved multi-domain
calibration: in practice

* Model Selection

* Post-Processing

NSO

’A',. <7 A‘L’L.
O L7 ISKN? Post
XA AT

OO0 Proccesor

O

* Training full model: learn classifier fg(x)

min Y 1°(fg) + 1-1(fp)

o €€Etrain



Tools for Calibration - Post Processing

* Isotonic Regression: classic tools that learns monotone transformation z : R — R

on model outputs /i to minimize squared error from label:

1 N

argmin — » _ (2(f;) —v)°

1=1

* Robust Isotonic Regression (new): we suggest a variation to bound

worst-domain calibration error:

1 N

. 2
e g 7 2 (U0~ )
1=



A Multi-Domain Calibration Regularizer

* Our regularizer builds on the kernel based regularizer of [Kumar et al. 18]

Maximum Mean Calibration Error (MMCE): for dataset D = {X;, y; }i=
1
rhleCE(fG) = 7 ZE:D(CL' — fo;1)(¢; — fo,))k(fo;is fo;;)
L,
c; : correctness of fg(x) on example i

fo.i : confidence of fg(x) on example i

k(-,-) : universal kernel



A Multi-Domain Calibration Regularizer

* Our regularizer builds on the kernel based regularizer of [Kumar et al. 18]

Maximum Mean Calibration Error (MMCE): for dataset D = {X;, y; }i=

rumce(fo) = — X (ci = fo,0)(c; = fo, 0k (fo,i, fo.5)

l]ED
* Calibration Loss Over Environments (CLOVE): datasets D, foreache € Eir,in

% rcLove(fo) = X rMMCE (fo)

€€EEtrain

Key property:
rcLovi (fg) = O if and only if f(x) is calibrated on E'rain




Colored MNIST

* Example from [Kim et al. 18, Arjovsky et al. 19], introduce (57
spurious correlations with color to MNIST digits

e Further simplified by [Kamath et al. 21] to “Two-Bit” environments”

Y < Rad(0.5),X; < Y - Rad(a), X; « Y - Rad(f)
* Trainon e; = (a, 1), ' 5@()@]‘3&5;"&7/ h-ftcgrrg%tigﬁ‘\’;vf/téolor

* Motivation for IRM [Arjovsky et al.], however turns out IRM is not a
solution!



Colored MINIST

Zeros of r{gumy1 (f) for odd classifiers:

ie. f(LD) =—f(=1,-Dand f(1,-1) = —f(-1,1

4+

N

logit(f(1,1))

Invariant

-2 o 2 4

logit(f (1,-1))

P. Kamath, A. Tangella, D. J. Sutherland, and N. Srebro. Does invariant risk minimization capture invariance? In AISTATS, 2021



Colored MINIST

Zeros of r{gumy1 (f) for odd classifiers:
ie. f(1,1)=—f(—-1,—-1Dandf(1,-1)=—-f(-1,1
4‘
S
SOQ
Qo
= 4,
=
S ,
ED /
Intersections are zeros of TirMv1 (fo)
| \
’ [nvariant
2 o 2

logit(f (1,-1))

P. Kamath, A. Tangella, D. J. Sutherland, and N. Srebro. Does invariant risk minimization capture invariance? In AISTATS, 2021



Colored MINIST

Zeros of r{gumy1 (f) for odd classifiers:

ie. f(LD) =—f(=1,-Dand f(1,-1) = —f(-1,1

logit(f(1,1))

Intersection with minimal empirical
loss is not invariant!

’
’
’
’
’
’
’
’
’
’

Invariant

T2

o 2 4
logit(f (1,-1))

P. Kamath, A. Tangella, D. J. Sutherland, and N. Srebro. Does invariant risk minimization capture invariance? In AISTATS, 2021




CLOVE Achieves Invariance in Colored MINIST

Zeros of 1yt (fy) and &L ove (fp) for odd classifiers:

CLOVE discards spurious feature when IRMv1 doesn’t!

*On actual dataset: comparable performance in most
settings, failure case can be reproduced

logit(f(1,1))

Invariant

Calibrated O

IRMv1 L]

T2 o0

2
logit(f (1,-1))

P. Kamath, A. Tangella, D. J. Sutherland, and N. Srebro. Does invariant risk minimization capture invariance? In AISTATS, 2021




Experiments on Large Scale Datasets

Camelyonl7 FMoW

WILD S

[Koh et al. 20]

+ other tasks that involve regression or
sub-population shift

d = Hospital 1 2002 /
Americas

Fine-tune representation from last layer
with 3 fully-connected layers

Our variation on
Isotonic Regression

Post Processing
Isotonic Regression

FMoW Camelyonl7
Algorithm Orig.  Naive Cal. Rob. Cal. CLOVE | Orig. Naive Cal. Rob. Cal. CLOVE
ERM 32.63 33.09 37:19 44.16 66.66 7123 71.22 75:15

(0.016) (0.021) (0.035)  (0.018) | (0.144) (0.089) (0.086) (0.049)



Experiments on Large Scale Datasets

W | L S ;%is 7~?).(,~.;='.'ﬂ u=;:v =

[Koh et al. 20] K' 1 ':t"';ﬁ

. Fine-tune representation from last layer
d;=licspial 1 i 2002/ with 3 fully-connected layers
mericas

Our variation on
Isotonic Regression

Post Processing
Isotonic Regression

FMoW Camelyonl7
Algorithm Orig.  Naive Cal. Rob. Cal. CLOVE | Orig. Naive Cal. Rob. Cal. CLOVE
ERM 32.63 33.09 37:19 44.16 66.66 7123 71.22 75:75
(0.016) (0.021) (0.035)  (0.018) | (0.144) (0.089) (0.086)  (0.049)
DeepCORAL | 31.73 31.75 33.86 40.05 72.44 719.97 76.8 79.96
(0.01) (0.01) (0.016)  (0.009) | (0.044) (0.054) (0.065)  (0.039)
IRM 31.33 31.81 3441 42.24 70.87 73.25 73.4 73.95
(0.012) (0.016) (0.015)  (0.014) | (0.068) (0.066) (0.069)  (0.061)




Experiments on Large Scale Datasets

Camelyonl7 FMoW
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d = Hospital 1 2002 /

Americas
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Assessing Stability with Calibration Error

e Suggestion: balance in-domain accuracy and

Expected Calibration Error (ECE)
* Colored MNIST: trained 100 models w/ IRM, CLOVE, ERM and random

hyperparams

Pearson corr: -0.92

0.7
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» o
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06 ©®e® °®
o.:..o:):.. “°
3 0.5
©
3
204
a)
So3
02 « ERM
CLoVE
01 e« IRM

0.01 0.02 0.03 0.04 0.05
Average ECE on Training Envrionments



Ssummary

* Definition of spurious correlations of a ot of
eto

representation w.r.t. an “environment” sossible
variable E : YAE |®(x) targets Q

e Calibration =~ invariance w.r.t. £

* With diverse environments: /
multi-environment calibration = X — Y — X
no spurious correlations \ \
(in linear-Gaussian and some other HL
simplified settings)

ac- Splll'lOllS

ac non- spurlous

* Multi-environment calibration improves
results on existing (flawed) OOD benchamrks



Open questions

* Is calibration a red herring here?

* Non-linear models

* Number of training environments

* The role of unobserved confounders

* High-dimensional representations

* Problems with overparameterized models

* What if | know about some interventions in the dataset?
* Generally many ways to add side-information, e.g. other labels



