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Machine learning: 
some remarkable successes

• Learning to classify
• Learning to act

(when a perfect simulator is available)



The next step: 
Some things we can’t do yet 

• Learn how to act optimally without 
access to a simulator
• Based on observational data

• Unsupervised domain adapatation
• Eg: classify images in a-priori 

unknown contexts

• My research is often motivated by 
problems in healthcare, where both 
subjects come up Gottesman et al. 2019

Image: F. Johansson



• Testing state-of-the-art deep learning models for COVID-19 detection

• Sharp drop in performance across hospitals and datasets

• Turns out the models often rely on spurious features outside the lungs
• E.g.: Laterality markers, presence of shoulder region, 

known to be clinically irrelevant for COVID-19



Out-of-Domain (OOD) Generalization
• 𝑋: features,  𝑌: label (usually discrete)

• Source distributions 𝑃!!(𝑋, 𝑌)
• Learn model that works well on 

unknown Target distributions 
𝑃" 𝑋, 𝑌 ∈ 𝒬
• We allow 𝑃" 𝑋, 𝑌 to 

change in certain ways relative to 
𝑃!!(𝑋, 𝑌)
(defined via causal graphs)
• Including changes to 𝑃" 𝑌|𝑋

• Our approach relies on 
multi-environment calibration

Set of 
possible 
targets 𝒬

Source
𝑃!



Formalizing OOD and spurious correlations
• Causal graph encoding assumptions

about how target domain can differ 
from source (train) domains
• Example:
𝐸: hospital
𝑌: disease
𝑋"#$%#&: patient demographics
𝑋#"'()('%*$+,)$%: “disease pixels”
𝑋#"'%*$+,)$%: pixels caused by 
hospital specific imaging setup
• We don’t know a-priori which is which
• Note no arrow from 𝐸 to 𝑌! 
• At test time we observe a new environment 𝐸 = 𝑒, 𝑒 ∈ ℰ

( 𝑑𝑜(𝐸 = 𝑒) for previously unseen value 𝑒)



Spurious-free representations

Representation

• Causal graph encoding assumptions
about how target domain can differ 
from source (train) domains
• Example:
𝐸: hospital
𝑌: disease
𝑋"#$%#&: patient demographics
𝑋#"'()('%*$+,)$%: “disease pixels”
𝑋#"'%*$+,)$%: pixels caused by 
hospital specific imaging setup
• We don’t know a-priori which is which
• Note no arrow from 𝐸 to 𝑌! 
• At test time we observe a new environment 𝐸 = 𝑒, 𝑒 ∈ ℰ

( 𝑑𝑜(𝐸 = 𝑒) for previously unseen value 𝑒)



Formalizing spuriousness

RepresentationA representation Φ(𝑥)
has spurious correlatons 

w.r.t. to 𝑌 and 𝐸 if 
𝑌⫫𝐸|Φ(𝑥)

• Models using spurious features 
can incur arbitrarily high risk when 
test is previously unseen 
environment 𝐸 = 𝑒
• The problem occures when using 
𝑋#$%&'()*+(& (Collider) 

• and when not using 𝑋"#$%#&



Formalizing spuriousness
• The problem occures when 

using 𝑋#$%&'()*+(&
• Collider! 

• Shares the spirit of Invariant 
Causal Prediction (ICP) (Peters 
et al. 16) and Invariant Risk 
Minimization (IRM) 
(Arjovsky et al. 19)

RepresentationA representation Φ(𝑥)
has spurious correlatons 

w.r.t. to 𝑌 and 𝐸 if 
𝑌⫫𝐸|Φ(𝑥)



• Assume we have access to samples 
from multiple e ∈ 𝐸
• How can we learn an informative

representation Φ(𝑥) such that
𝑌⫫𝐸|Φ(𝑥)? 
(no spurious correlations)
• Seems like a difficult optimization 

problem
• We show this is equivalent to a more

approachable problem:
Multi-environment Calibration
• Allows us to adapt a huge set of 

pre-existing tools from the calibration
literature

Optimizing for stability

A representation Φ(𝑥)
has spurious correlatons 
w.r.t. to 𝑌 and 𝐸 if 
𝑌⫫𝐸|Φ(𝑥)



• A classifier 𝑓:𝒳 → [0,1] is calibrated if 𝔼 𝑌 𝑓 𝑋 = 𝑓(𝑥)
• Calibration: probabilities of events match predictions

Calibration



Patients

• A classifier 𝑓:𝒳 → [0,1] is calibrated if 𝔼 𝑌 𝑓 𝑋 = 𝑓(𝑥)
• Calibration: probabilities of events match predictions
• 𝑓 𝑥 : probability of tumor

Calibration



Patients

• Calibration: 90% of patients with prediction 0.9 indeed have tumor

• A classifier 𝑓:𝒳 → [0,1] is calibrated if 𝔼 𝑌 𝑓 𝑋 = 𝑓(𝑥)
• Calibration: probabilities of events match predictions
• 𝑓 𝑥 : probability of tumor

Calibration



Hospital A Hospital B

• A classifier 𝑓:𝒳 → [0,1] is calibrated if 𝔼 𝑌 𝑓 𝑋 = 𝑓(𝑥)
• Calibration: probabilities of events match predictions
• 𝑓 𝑥 : probability of tumor

Multi Environment Calibration



Hospital A Hospital B

• Calibration: 90% of patients with prediction 0.9 indeed have tumor

• A classifier 𝑓:𝒳 → [0,1] is calibrated if 𝔼 𝑌 𝑓 𝑋 = 𝑓(𝑥)
• Calibration: probabilities of events match predictions
• 𝑓 𝑥 : probability of tumor

Calibration



Hospital A

Diagnosed with illness

Diagnosed not ill

True probability: 1

True probability: 0.8

May be a sign of
model instability!

Hospital B

• A classifier 𝑓:𝒳 → [0,1] is calibrated if 𝔼 𝑌 𝑓 𝑋 = 𝑓(𝑥)
• Calibration: probabilities of events match predictions
• 𝑓 𝑥 : probability of tumor

Calibration



Hospital A

Diagnosed with illness

Diagnosed not ill

True probability: 0.9

True probability: 0.9

Encouraging sign 
for stability

Hospital B

• A classifier 𝑓:𝒳 → [0,1] is calibrated if 𝔼 𝑌 𝑓 𝑋 = 𝑓(𝑥)
• Calibration: probabilities of events match predictions
• 𝑓 𝑥 : probability of tumor

Calibration



• Consider the representation Φ 𝑥 = 𝑓 𝑥 , where 𝑓(𝑥) is a binary classifier
• Avoid spurious correlations by enforcing 𝑌⫫𝐸|𝑓(𝑥) on training 

environments 𝐸-./01
• Let us call such classifiers invariant classifiers.

Invariance on Training Environments 𝐸"#$%&



• Seemingly unrelated to spurious correlations
• We are interested in calibration on all training environments simultaneously 

Calibration on Training Environments 𝐸"#$%&



Invariance and Calibration on 𝐸!"#$%
Invariance: 
𝑌⫫𝐸|𝑓(𝑥)

Calibration:
𝔼 𝑌 𝑓 𝑥 = 𝑓(𝑥)



Lemma
If a binary classifier 𝑓 is invariant w.r.t 𝐸-./01 then there exists a function 
𝑔: [0,1] → [0,1] such that:
(i) 𝑔 ∘ 𝑓 is calibrated on all training environments, and
(ii) the MSE of 𝑔 ∘ 𝑓 on each environment does not exceed that of 𝑓

Conversely, if a classifier is calibrated on all training environments, it is all 
invariant w.r.t. 𝐸-./01

Invariance: 
𝑌⫫𝐸|𝑓(𝑥)

Calibration:
𝔼 𝑌 𝑓 𝑥 = 𝑓(𝑥)

Invariance and Calibration on 𝐸!"#$%



Lemma
If a binary classifier 𝑓 is invariant w.r.t 𝐸-./01 then there exists a function 
𝑔: [0,1] → [0,1] such that:
(i) 𝑔 ∘ 𝑓 is calibrated on all training environments, and
(ii) the MSE of 𝑔 ∘ 𝑓 on each environment does not exceed that of 𝑓

Conversely, if a classifier is calibrated on all training environments, 
it is invariant w.r.t. 𝐸-./01

Invariance: 
𝑌⫫𝐸|𝑓(𝑥) !⟺ Calibration:

𝔼 𝑌 𝑓 𝑥 = 𝑓(𝑥)

Invariance and Calibration on 𝐸!"#$%



• Similar to invariant representations of Invariant Risk Minimization (IRM) [Arjovsky 19], 
yet with several differences:
• Calibration does not involve optimality with respect to a specific loss function:

IRM results in invariant classifier only when applied with logistic or squared loss
• IRM cannot be effectively optimized, while more tractable IRMv1 does not guarantee 

invariances (Kamath et al. 2021)
• We show multi-domain calibration correctly identfies Kamath et al. 2021 invariances

Invariance and Calibration on 𝐸!"#$%
Lemma
If a binary classifier 𝑓 is invariant w.r.t 𝐸-./01 then there exists a function 
𝑔: [0,1] → [0,1] such that:
(i) 𝑔 ∘ 𝑓 is calibrated on all training environments, and
(ii) the MSE of 𝑔 ∘ 𝑓 on each environment does not exceed that of 𝑓

Conversely, if a classifier is calibrated on all training environments, 
it is invariant w.r.t. 𝐸-./01



• Generalization: assume 𝑓(𝑥) is calibrated on all 𝐸-./01 , 
when does it imply calibration on ℰ ?
• Spurious correlations: what can we formally claim about a calibrated 

classifier’s use of 𝑋#"'%*$+,)$%?

Questions of Interest



•We consider settings with features generated from multivariate 
Gaussians
• Each environment parameterized by mean vectors and 

covariance matrices, ℰ = 𝜇, Σ 𝜇 ∈ ℝ+ , Σ ∈ 𝑃𝑆𝐷+×+}
• Two scenarios:

Simplified Settings: Linear-Gaussian Models



• consists of    training environments

• Dimension of spurious features is

• For each environment            , data is generated by:

• Learn linear classifier                               , where                                 invertible

• Theorem: given               training environments, under mild non-degeneracy 
conditions* any classifier that is calibrated on            has weights zero on 

*a general position assumption

Classification with Invariant and Spurious Features



• Similar setting, but for regression with causal features

• Dimensions of features are 

• For each environment                        data is generated by:

• Theorem: given                                   training environments, under mild non-
degeneracy conditions the only multi-environment  calibrated predictor is 

Regression with Covariate Shift and Spurious Features



• In simple cases, calibration across training domains:

• Discards 

• Achieves OOD calibration if number of environments is linear in number of 
features

• Here calibration = discarding                   = bounded worst-case risk

• This is not trivial for non-linear models, calls for further analysis

• Theory à Practice?

Conclusions from Motivating Examples



• Calibration Plots visual representation of calibration in binary 
problems
• 0,1 interval divided to 𝐵 bins, 𝑓 𝑥 placed into appropriate bin
• Average confidence in each bin plotted against accuracy. 

• ECE Score
• Scalar summary of the curve, averaging

deviations from diagonal

𝐸𝐶𝐸 = @
234

5
𝑛2
𝑁

𝑎𝑐𝑐 𝑏 − 𝑐𝑜𝑛𝑓(𝑏)

𝑎𝑐𝑐 𝑏 is mean number of errors in bin 𝑏
𝑐𝑜𝑛𝑓 𝑏 is mean of 𝑓(𝑥) in bin 𝑏

Tools for Calibration



• Model Selection

• Post-Processing

• Training full model: learn classifier 𝑓6(𝑥)

𝑚𝑖𝑛
!

∑
"∈$!"#$%

𝑙"(𝑓!) + 𝜆 ⋅ 𝑟(𝑓!)

Achieving OOD generalization via improved multi-domain 
calibration: in practice

Post
Proccesor

𝑓! 𝑓! 𝑓"… 𝑓#



• Isotonic Regression: classic tools that learns monotone transformation                  
on model outputs     to minimize squared error from label:

• Robust Isotonic Regression (new): we suggest a variation to bound 
worst-domain calibration error:

Tools for Calibration - Post Processing



• Our regularizer builds on the kernel based regularizer of [Kumar et al. 18]

Maximum Mean Calibration Error (MMCE): for dataset𝐷 = {𝐱0 , 𝑦0}034
7

𝑟889:; (𝑓6) =
4
7& ∑

0,=∈;
(𝑐0 − 𝑓6;0)(𝑐= − 𝑓6;=)𝑘(𝑓6;0 , 𝑓6;=)

𝑐' : correctness of 𝑓!(𝑥) on example 𝑖
𝑓!;' : confidence of 𝑓!(𝑥) on example 𝑖

𝑘(⋅,⋅) : universal kernel

A Multi-Domain Calibration Regularizer



• Our regularizer builds on the kernel based regularizer of [Kumar et al. 18]

Maximum Mean Calibration Error (MMCE): for dataset𝐷 = {𝐱0 , 𝑦0}034
7

𝑟889:; (𝑓6) =
4
7& ∑

0,=∈;
(𝑐0 − 𝑓6;0)(𝑐= − 𝑓6;=)𝑘(𝑓6;0 , 𝑓6;=)

• Calibration Loss Over Environments (CLOvE): datasets 𝐷@ for each 𝑒 ∈ 𝐸A+#,(

𝑟9BCD:(𝑓6) = ∑
@∈E)*+,-

𝑟889:
;. (𝑓6)

Key property: 
𝑟<=>?@(𝑓A) = 0 if and only if 𝑓6(𝑥) is calibrated on 𝐸B)#*C

A Multi-Domain Calibration Regularizer



• Example from [Kim et al. 18, Arjovsky et al. 19], introduce
spurious correlations with color to MNIST digits
• Further simplified by [Kamath et al. 21] to “Two-Bit” environments”

𝑌 ← Rad(0.5), 𝑋! ← 𝑌 ⋅ Rad(𝛼), 𝑋" ← 𝑌 ⋅ Rad(𝛽)
• Train on 𝑒! = (𝛼, 𝛽!), 𝑒" = (𝛼, 𝛽"), test on 𝑒test = (𝛼, 𝛽-@F-)
• Motivation for IRM [Arjovsky et al.], however turns out IRM is not a 

solution!

Colored MNIST

Correlation w/ ColorCorrelation w/ Digit0-4 5-9



Zeros of 𝑟#$%&'( (𝑓)) for odd classifiers:
i.e. 𝑓(1,1) = −𝑓(−1,−1) and 𝑓(1, −1) = −𝑓(−1,1)

Colored MNIST

P. Kamath, A. Tangella, D. J. Sutherland, and N. Srebro.  Does invariant risk minimization capture invariance?  In AISTATS, 2021

lo
gi
t
𝑓(
1,
1) 𝑒 !
=
(0
.05
,0.
1)

Invariant

logit 𝑓(1, −1)



Zeros of 𝑟#$%&'( (𝑓)) for odd classifiers:
i.e. 𝑓(1,1) = −𝑓(−1,−1) and 𝑓(1, −1) = −𝑓(−1,1)

Colored MNIST

P. Kamath, A. Tangella, D. J. Sutherland, and N. Srebro.  Does invariant risk minimization capture invariance?  In AISTATS, 2021

lo
gi
t
𝑓(
1,
1) 𝑒 !
=
(0
.05
,0.
1)

Invariant

logit 𝑓(1, −1)

𝑒 "
=
(0
.05
,0
.2)

Intersections are zeros of 𝑟#$%&'(𝑓))



Zeros of 𝑟#$%&'( (𝑓)) for odd classifiers:
i.e. 𝑓(1,1) = −𝑓(−1,−1) and 𝑓(1, −1) = −𝑓(−1,1)

Colored MNIST

P. Kamath, A. Tangella, D. J. Sutherland, and N. Srebro.  Does invariant risk minimization capture invariance?  In AISTATS, 2021

lo
gi
t
𝑓(
1,
1) 𝑒 !
=
(0
.05
,0.
1)

Invariant

logit 𝑓(1, −1)

𝑒 "
=
(0
.05
,0
.2)

Intersection with minimal empirical
loss is not invariant!

OPT$%&'(



Zeros of 𝑟#$%&'( (𝑓)) and 𝑟456&7( (𝑓)) for odd classifiers:

CLOvE Achieves Invariance in Colored MNIST

𝑒 t
es
t=

(0
.0
5,
0.
9)

𝑒 "
=
(0
.05
,0
.2)

𝑒 !
=
(0
.05
,0.
1) OPT$%&'(

CLOvE discards spurious feature when IRMv1 doesn’t!

Calibrated
IRMv1

OPT)*+,-

*On actual dataset: comparable performance in most
settings, failure case can be reproduced

Calibrated

IRMv1

OPT$%&'(

OPT./0'1

Invariant

P. Kamath, A. Tangella, D. J. Sutherland, and N. Srebro.  Does invariant risk minimization capture invariance?  In AISTATS, 2021
logit 𝑓(1, −1)

lo
gi
t
𝑓(
1,
1)

𝑒 "
=
(0
.05
,0
.2)

𝑒 !
=
(0
.05
,0.
1)



Experiments on Large Scale Datasets

[Koh et al. 20]

FMoWCamelyon17

+ other tasks that involve regression or
sub-population shift 

Post Processing
Isotonic Regression

Our variation on
Isotonic Regression

Fine-tune representation from last layer
with 3 fully-connected layers



Experiments on Large Scale Datasets

[Koh et al. 20]

FMoWCamelyon17

Post Processing
Isotonic Regression

Our variation on
Isotonic Regression

Fine-tune representation from last layer
with 3 fully-connected layers



Experiments on Large Scale Datasets

[Koh et al. 20]

FMoWCamelyon17



Assessing Stability with Calibration Error
• Suggestion: balance  in-domain accuracy and 

Expected Calibration Error (ECE)
• Colored MNIST: trained 100 models w/ IRM, CLOvE, ERM and random 

hyperparams

Pearson corr. -0.92 Pearson corr. -0.59Pearson corr: -0.92 Pearson corr: -0.59



Summary
•Definition of spurious correlations of a 

representation w.r.t. an “environment” 
variable 𝐸 : 𝑌⫫𝐸|Φ(𝑥)
•Calibration ≈ invariance w.r.t. 𝐸
•With diverse environments: 

multi-environment calibration ⟹
no spurious correlations 
(in linear-Gaussian and some other
simplified settings)
•Multi-environment calibration improves 

results on existing (flawed) OOD benchamrks 



Open questions

• Is calibration a red herring here? 
• Non-linear models
• Number of training environments
• The role of unobserved confounders
• High-dimensional representations
• Problems with overparameterized models
•What if I know about some interventions in the dataset?
• Generally many ways to add side-information, e.g. other labels


