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A medical treatment scenario

or

Hidden context not observed

A Y

6/9

From our observations of historical hospital data:

P(Y = curedjA = pills) = 0:80

P(Y = curedjA = surgery) = 0:72

Just recommend pills? Cheaper and more effective!
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A medical treatment scenario

or

Hidden context not observed, do(a)

a Y a

7/9

From our intervention (making all patients take a treatment):

P(Y = curedjdo(pills)) = 0:64

P(Y = curedjdo(surgery)) = 0:75

What went wrong?
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Observational vs interventional
Conditioning from observation:

E(Y jA = a) =
X
x

E(y ja ; x )p(x ja)
Hidden context observed

X

A Y

8/9

or

or
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Observational vs interventional
Average causal effect (intervention):

E(Y (a)) =
X
x

E(y ja ; x )p(x )

Hidden context observed, do(a), SWIG

X

A

a
Y a

9/9

or

or
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Questions we will solve

X

A

a
Y (a)
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Outline
Talk structure:
Average treatment effect (ATE)
� ...via kernel/NN mean embedding (marginalization)

Conditional average treatment effect (CATE)
� via conditional mean embedding

Average treatment on treated
Mediation effect, dynamic treatment effect
Proxy methods
� ...when covariates are hidden

Properties and advantages of approach:

Treatment A, covariates X , etc are by default multivariate,
complicated...
Simple, robust implementation;
Strong statistical guarantees under general smoothness assumptions

Methods also implemented for adaptive neural net features 6/41



Key requirement: linear functions of features
All learned functions will take the form:


̂(x ) = 
̂>'(x ) = h
̂; '(x )iH

Option 1: Finite dictionaries of learned neural net features

Xu, Chen, Srinivasan, de Freitas, Doucet, G. “Learning Deep Features in Instrumental
Variable Regression”. (ICLR 21)
Xu, Kanagawa, G. “Deep Proxy Causal Learning and its Application to Confounded
Bandit Policy Evaluation”. (NeurIPS 21)

Option 2: Infinite dictionaries of fixed kernel features:

h'(xi ); '(x )iH = k(xi ; x )

Kernel is feature dot product.
Primary focus of this talk.
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Building block: kernel ridge regression
Learn 
0(x ) := E[Y jX = x ] from features '(xi ) with outcomes yi :


̂ = argmin

2H

 nX
i=1

(yi � h
; '(xi )iH)
2 + �k
k2H

!
:

Kernel as feature dot product:

h'(xi ); '(x )iH = k(xi ; x )

Solution at x (as weighted sum of y)


̂(x ) =
nX

i=1

yi�i (x )

�(x ) = (K + �I )�1kXx

(KXX )ij = k(xi ; xj )

(kXx )i = k(xi ; x )
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KRR: consistency in RKHS norm

Assume problem well specified

Denote: 
0 2 Hc where Hc � H; c 2 (1; 2]

Larger c =) smoother 
0 =) easier problem.

Consistency [A, Prop. F.1]

k
̂ � 
0kH = OP

�
n�

1
2

c�1
c+1
�
;

best rate is OP (n�1=6).

[A] Singh, Xu, G (2021a), Generalized Kernel Ridge Regression for Nonparametric Structural Functions
and Semiparametric Treatment Effects.

Results from:
Smale and Ding-Xuan Zhou (2007). Learning theory estimates via integral operators and their
approximations; Caponnetto, De Vito (2007), Optimal rates for the regularized least-squares algorithm.
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(Conditional) average treatment effect,
average treatment on treated

10/41



Average treatment effect
Average causal effect (intervention):

E(Y (a)) =

Z
E(y ja ; x )dp(x )

(the average structural function; in epidemiology, for continuous a ,
the dose-response curve).
Assume: (1) no interference/spillover, (2) conditional exchangeability Y (a) ?? AjX : (3)
Overlap.

Example: US job corps, training
for disadvantaged youths:

A: treatment (training hours)

Y : outcome (percentage
employment)

X : covariates (age, education,
marital status, ...)

X

A

a
Y (a)

Richardson, Robins (2013), Single World Intervention Graphs (SWIGs): A Unification of the
Counterfactual and Graphical Approaches to Causality
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Multiple inputs via products of kernels
We may predict expected outcome
from two inputs


0(a ; x ) := E[Y ja ; x ]

Assume we have:

covariate features '(x ) with
kernel k(x ; x 0)

treatment features '(a) with
kernel k(a ; a 0)

(argument of kernel/feature map indicates
feature space)

X

A

a
Y (a)

We use outer product of features ( =) product of kernels):

�(x ; a) = '(a)
 '(x ) K([a ; x ]; [a 0; x 0]) = k(a ; a 0)k(x ; x 0)

Ridge regression solution:


̂(x ; a) =
nX

i=1

yi�i (a ; x ); �(a ; x ) = [KAA �KXX + �I ]�1 KAa �KXx
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ATE (dose-response curve)

Well specified setting:


0(a ; x ) = E[Y ja ; x ] 2 H

ATE as feature space dot product:

�ATE0 (a) = EP [
0(a ;X )]

= EP h
0; '(a)
 '(X )i

=



0; �P|{z}

EP'(X )


 '(a)
�

X

A

a
Y (a)
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=
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�

X

A

a
Y (a)

Feature map of probability P ,

�P = [: : :EP ['i (X )] : : :]
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ATE (dose-response curve)

Well specified setting:


0(a ; x ) = E[Y ja ; x ] 2 H

ATE as feature space dot product:

�ATE0 (a) = EP [
0(a ;X )]

= EP h
0; '(a)
 '(X )i

=



0; �P|{z}

EP'(X )


 '(a)
�

X

A

a
Y (a)

For characteristic kernels, �P is injective.
Consistency: k�̂P � �PkH = OP (n�1=2)
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ATE: empirical estimate and consistency

Empirical estimate of ATE:

�̂ATE(a) =
1
n

nX
i=1

Y >(KAA �KXX + n�I )�1(KAa �KXxi )

Consistency: 


�̂ATE � �ATEo





1

= OP

�
n�

1
2

c�1
c+1
�

Follows from consistency of �̂P ; and of 
̂ under smoothness
assumption 
0 2 Hc :
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ATE: example

US job corps: training for dis-
advantaged youths:

X : covariate/context (age,
education, marital status, ...)

A: treatment (training hours)

Y : outcome (percent
employment)

X

A

a
Y (a)

Schochet, Burghardt, and McConnell (2008). Does Job Corps work? Impact findings from the national
Job Corps study.
Singh, Xu, G (2021a).
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ATE: results

0 500 1000 1500 2000
Class-hours

35

40

45

Pe
rc

en
t e

m
pl

oy
m

en
t

RKHS
DML2

First 12.5 weeks of classes confer employment gain: from 35% to 47%.
[RKHS] is our �̂ATE(a)
[DML2] Colangelo, Lee (2020), Double debiased machine learning
nonparametric inference with continuous treatments.

Singh, Xu, G (2021a)
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Confidence intervals for discretized treatment

0 500 1000 1500 2000
Class-hours

37.5

40.0

42.5

45.0

47.5

50.0

Pe
rc

en
t e

m
pl

oy
m

en
t

Doubly robust estimator: semiparametric efficiency, asymptotic
normality, confidence intervals
Automated debiasing (via kernel regression)
Requires discretized treatment (here, equiprobable bins)

Singh, Xu, G (2021a)
Chernozhukov, Newey, Singh (2018). Automatic debiased machine learning of causal and structural
effects. 17/41



Conditional ATE: example

US job corps: train-
ing for disadvantaged
youths:

X : confounder/context
(education, marital
status, ...)

A: treatment (training
hours)

Y : outcome (percent
employed)

V : age

X

A

a
Y (a)

V

Singh, Xu, G (2021a)
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Conditional average treatment effect

Learned conditional mean:

E[Y ja ; x ; v ] � 
0(a ; x ; v)

= h
0; '(a)
 '(x )
 '(v)i :

Conditional ATE

�CATEo (a ; v)

= E(Y (a)jV = v)

= EP (h
0; '(a)
 '(X )
 '(V )i jV = v)

X

A

a
Y (a)

V

Learn conditional mean embedding: �X jV=v := EP ('(X )jV = v)
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�CATEo (a ; v)

= E(Y (a)jV = v)

= EP (h
0; '(a)
 '(X )
 '(V )i jV = v)

= :::?

X

A

a
Y (a)

V

How to take conditional expectation?
Density estimation for p(X jV = v)? Sample from p(X jV = v)?

Learn conditional mean embedding: �X jV=v := EP ('(X )jV = v)
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V
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Regressing from feature space to feature space
Our goal: an operator E0 : HV !HX such that

E0'(v) = �X jV=v

Assume

E0 2 span f'(x )
 '(v)g () E0 2 HS(HV ;HX )

Smoothness assumption:

EP [h(X )jV = v ] 2 HV 8h 2 HX

Kernel ridge regression from '(v) to infinite features '(x ):

bE = argmin
E2HS

nX
`=1

k'(x`)� E'(v`)k2HX
+ �2kEk2HS

Song, Huang, Smola, Fukumizu (2009). Hilbert space embeddings of conditional distributions with
applications to dynamical systems.
Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012). Conditional mean embeddings as
regressors.
Grunewalder, G, Shawe-Taylor (2013) Smooth operators.
Singh, Sahani, G (2019), Kernel Instrumental Variable Regression.
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Kernel ridge regression from '(v) to infinite features '(x ):

bE = argmin
E2HS

nX
`=1

k'(x`)� E'(v`)k2HX
+ �2kEk2HS

Ridge regression solution:

�X jV=v := EP ['(X )jV = v ] � bE'(v) = nX
`=1

'(x`)�`(v)

�(v) = [KVV + �2I ]�1 kVv
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Consistency of conditional mean embedding
Assume problem well specified [A, Hypothesis 5]

E0 2 HS(Hc1
V ;HX )

Larger c1 =) smoother E0 =) easier problem.

Consistency [A, Theorem 2]


 bE � E0





HS

= OP

�
n�

1
2

c1�1
c1+1

�
;

best rate is OP (n�1=6).

[A] Singh, Sahani, G (2019)

Earlier consistency proof for finite dimensional '(x ):
Grunewalder, Lever, Baldassarre, Patterson, G, Pontil (2012).
Caponnetto, De Vito (2007).
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Consistency of CATE

Empirical CATE:

�̂CATE(a ; v) =



̂; '(a)
 �̂X jV=v 
 '(v)

�

= Y >(KAA �KXX �KVV + n�I )�1(KAa �KXX (KVV + n�1I )�1KVv| {z }
from �̂X jV=v

�KVv )

Consistency:

k�̂CATE � �CATE0 k1 = OP

�
n�

1
2

c�1
c+1 + n�

1
2

c1�1
c1+1

�
:

Follows from consistency of bE and 
̂; under the smoothness
assumptions.

Singh, Xu, G (2021a)
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Conditional ATE: example

US job corps: train-
ing for disadvantaged
youths:

X : confounder/context
(education, marital
status, ...)

A: treatment (training
hours)

Y : outcome (percent
employed)

V : age

X

A

a
Y (a)

V

Singh, Xu, G (2021a)
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Conditional ATE: results

500 1000 1500
Class-hours

16

18

20

22

24

Ag
e

36.0

36.0

40.0

40.0 40.044.0

44.048.0

52.0
56.0

Average percentage employment Y (a) for class hours a , conditioned
on age v . Given around 12-14 weeks of classes:

16 y/o: percent employment increases from 28% to at most 36%.
22 y/o: percent employment increases from 40% to 56%.

Singh, Xu, G (2021a)
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Counterfactual: average treatment on treated
Conditional mean:

E[Y ja ; x ] = 
0(a ; x )

= h
0; '(a)
 '(x )i

Average treatment on treated:

�ATT (a ; a 0)

= E(Y (a 0)jA = a)

= EP
�


0; '(a 0)
 '(X )

�
jA = a

�
=



0; '(a 0)
 EP ['(X )jA = a ]| {z }

�X jA=a

�

X

A

a
Y (a)

Empirical ATT:

�̂ATT(a ; a 0)

= Y >(KAA �KXX + n�I )�1(KAa 0 �KXX (KAA + n�1I )�1KAa| {z }
from �̂X jA=a

)
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Conditional mean:
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Mediation analysis

Direct path from treatment A to effect Y

Indirect path A ! M ! Y

X : context

Is the effect Y mainly due to A? To M ?

X

A

M

Y
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Mediation analysis: example
US job corps: training for dis-
advantaged youths:

X : confounder/context (age,
education, marital status, ...)

A: treatment (training hours)

Y : outcome (arrests)

M : mediator (employment)

X

A

M

Y


0(a ;m ; x ) � E[Y jA = a ;M = m ;X = x ]

A quantity of interest, the mediated effect:

Y fa 0;M (a)g =

Z

0(a 0;M ;X )dP(M jA = a ;X )dP(X )

= h
0; '(a 0)
 EPf�M jA=a ;X 
 '(X )gi

Effect of intervention a 0, with M (a) as if intervention were a

Singh, Xu, G (2021b). Kernel Methods for Multistage Causal Inference: Mediation Analysis and
Dynamic Treatment Effects. 27/41
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Mediation analysis: results
Total effect:

�TE
0 (a ; a 0)

:= E[Y fa 0;M (a0)g �Y fa ;M (a)g]
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-0.
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Direct effect:

�DE
0 (a ; a 0)

:= E[Y fa 0;M (a)g �Y fa ;M (a)g]
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a 0 = 1600 hours vs a = 480 means 0.1 reduction in arrests

Indirect effect mediated via employment effectively zero

Singh, Xu, G (2021b)
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...dynamic treatment effect...
Dynamic treatment effect: sequence A1;A2 of treatments.

X1 X2

A1 A2 Y

Causal effects Y (a1);Y (a2);Y (a1;a2);

counterfactuals E(y (a 01;a
0
2)jA1 = a1;A2 = a2)...

(c.f. the Robins G-formula)
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Unobserved confounders
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The proxy correction
Unobserved X with (possibly) complex nonlinear effects on A;Y
The definitions are:

X : unobserved confounder.

A: treatment

Y : outcome

Z : treatment proxy

W outcome proxy

If X were observed (which it
isn’t),

E(Y (a)) =

Z
E(y jx ; a)dp(x )

Bidirected arrow: possible con-
founding.

X

A Y

X WZ

A Y

Structural assumption:

W ?? (Z ;A)jX

Y ?? Z j(A;X )

=) Can recover E(Y (a)) from observational data!

Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder.
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Proof (discrete variables)
If X were observed,

P(Y jdo(a)) :=
DX

i=1

P(y jxi ; a)P(xi )

= P(y jX ; a)P(X )

Because W ?? (Z ;A)jX ,

P(W jZ ; a) = P(W jX )P(X jZ ; a)

=) P(X jZ ; a) = P�1(W jX )P(W jZ ; a)

Because Y ?? Z j(A;X ),

P(y jZ ; a) = P(y jX ; a)P�1(W jX )P(W jZ ; a)| {z }
P(X jZ ;a)

=) p(y jX ; a) = p(y jZ ; a)P�1(W jZ ; a)P(W jX )

The proxy correction
Unobserved X with (possibly) complex nonlinear effects on A Y ?
The definitions are:

X : unobserved confounder.

A: treatment

Y : outcome

Z : treatment proxy

W outcome proxy

Bidirected arrow: causal link in
either direction (or both).

X WZ

A Y

Not all edges need be present.
Structural assumption:

W Z A X

Y Z A X
Miao, Geng, Tchetgen Tchetgen (2018): Identifying causal effects with proxy variables of an unmeasured
confounder. 28/38
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Proof (discrete variables)

From previous slide:

p(y jX ; a) = p(y jZ ; a)P�1(W jZ ; a)P(W jX )

Multiply LHS and RHS by P(X ):

P(Y (a)) := P(y jX ; a)P(X )

= p(y jZ ; a)P�1(W jZ ; a)P(W jX )P(X )| {z }
P(W )

The proxy correction
Unobserved X with (possibly) complex nonlinear effects on A Y ?
The definitions are:
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Y : outcome

Z : treatment proxy

W outcome proxy

Bidirected arrow: causal link in
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Y Z A X
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The proxy correction (continuous)
If X were observed,

E(Y (a)) =

Z
E(y ja ; x )p(x )dx :

....but we do not see p(x ):

Main theorem: Assume we have solved...

E(y jz ; a) =
Z

hy(w ; a)p(w jz ; a)dw

(Fredholm integral of the first kind; subject to conditions for existence of solution)

...then causal effect via p(w):

E(y (a)) =

Z
hy(a ;w)p(w)dw

Expressions in terms of observed quantities, can be learned from data.

Miao, Geng, Tchetgen Tchetgen (2018)
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Our solution
Stage 1: ridge regression from �(a)
 �(z ) to �(w)
� yields conditional mean embedding �W ja;z

Stage 2: ridge regression from �W ja ;z and �(a) to y
� yields hy(w ; a).

Solved using sieves [A], kernel [B], or learned NN [C] features

Code available for kernel and NN solutions
https://github.com/liyuan9988/DeepFeatureProxyVariable/

[A] Deaner (2021) Proxy controls and panel data.

[B] Mastouri*, Zhu*, Gultchin, Korba, Silva, Kusner, G,y Muandety (2021); Proximal Causal Learning

with Kernels: Two-Stage Estimation and Moment Restriction
[C] Xu, Kanagawa, G. (2021) Deep Proxy Causal Learning and its Application to Confounded Bandit
Policy Evaluation 35/41
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Grade retention and cognitive outcome

X : unobserved confounder
(“ability”)

A: 0: no retention. 1:
kindergarten retention. 2:
early elementary retention.

Y : math scores, age 11

Z : cognitive test scores in
elementary school

W : cognitive test scores
from kindergarten

Results.

5

�����(���������

c

J. Fruehwirth, S. Navarro, Y. Takahashi (2016). How the timing of grade retention affects outcomes:
Identification and estimation of time-varying treatment effects.
Deaner (2021)
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Conclusions
Kernel ridge regression:

Solution for ATE, ATT, CATE, mediation analysis, dynamic
treatment effects, proximal learning
....with treatment A, covariates X ;V , mediator M , proxies (W ;Z )

multivariate, “complicated”
Simple, robust implementation
Strong statistical guarantees under general smoothness assumptions

In the papers, but not in this talk:

Doubly robust estimates for discrete A;V with automatic debiasing
Elasticities
Regression to causal effect distributions overY (not just E(Y (a)j : : :))
Instrumental variable regression
Same algorithms but with adaptive NN features
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Selected papers

Observed confounders:

Unobserved confounders:

ICML 2021:

NeurIPS 2021:

NeurIPS 2019:
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Questions?
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Instrumental variable setting (1)
Unobserved confounder e =) prediction 6= counterfactual
prediction
goal: learn causal relationship h between input X and output Y
� if we intervened on X , what would be the effect on Y ?

Instrument Z only influences Y via X ; identifying h

Z X Y

e

h

Y = hh ;  (X )i+ e E(e jZ ) = 0

Singh, Sahani, G., (NeurIPS 2019)
Xu, Chen, Srinivasan, de Freitas, Doucet, G. (ICLR 2021)
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Instrumental variable setting (2)

Z X Y

e

h

Ridge regression of  (X ) on �(Z )
� using n observations
� construct conditional mean embedding �(z ) := E[ (X )jZ = z ]

Ridge regression of Y on �(Z )
� using remaining m observations
� this is the estimator for h

Solved using kernel and learned NN features

Singh, Sahani, G., (NeurIPS 2019)
Xu, Chen, Srinivasan, de Freitas, Doucet, G. (ICLR 2021)
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