

# Cantor's Theorem

Dana Berman

September 27, 2018

**Theorem 1.** *Let  $A$  be a set and  $\mathcal{P}(A)$  the power set of  $A$ . Then there does not exist a surjection  $A \rightarrow \mathcal{P}(A)$ .*

Before proving the theorem, I want to give an example to clarify what the power set is. Suppose for instance  $A = \{1, 2\}$ . Then

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$$

The power set is a set of sets. The elements of the power set are themselves sets.

We include two more examples. If  $A = \emptyset$  then  $\mathcal{P}(A) = \{\emptyset\}$ . Finally, if  $A = \{0, 1, 2\}$  then

$$\mathcal{P}(A) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$$

You can make the observation that if  $A$  is a set with 2 elements then  $\mathcal{P}(A)$  has  $2^n$  elements.

*Proof.* Suppose for a contradiction there exists a set  $f : A \rightarrow \mathcal{P}(A)$ . Then for each  $a \in A$ ,  $f(a)$  is a subset of  $A$ . Now, we may consider the “anti-diagonal” set

$$D = \{a \in A : a \notin f(a)\}$$

That is,  $D$  is the subset of  $A$  containing all  $a \in A$  such that  $a$  is not in the set  $f(a)$ .

Since  $D$  is a subset of  $A$ , we have  $D \in \mathcal{P}(A)$ . Since  $f$  is bijective (in particular surjective), there exists  $x \in A$  such that  $f(x) = D$ . Now, there are exactly two possibilities:  $x \in D$  or  $x \notin D$ . We consider what happens in both cases.

1. If  $x \in D$ , then by definition of the set  $D$  it must be the case that  $x \notin f(x)$ . But since  $f(x) = D$ , we then have  $x \notin D$ . This is absurd since we cannot have  $x \in D$  and  $x \notin D$ .
2. If  $x \notin D$ . By definition of the set  $D$  the statement  $x \notin D$  implies that we must have  $x \in f(x)$ . But  $f(x) = D$ . So we have  $x \in D$  and  $x \notin D$  which is absurd.

Either way we obtain a contradiction. This shows that there cannot exist a surjective function  $A \rightarrow \mathcal{P}(A)$ .<sup>1</sup>  $\square$

---

<sup>1</sup>Similarly, there does not exist an injective function from  $\mathcal{P}(A)$  to  $A$ .