
Compiler Design
Lecture 5: Top-Down Parsing

Christophe Dubach
Winter 2026

Timestamp: 2026/01/16 11:03:00

1

The Parser

ScannerSource
code Tokeniser token

char
 Parser AST

Semantic
Analyser

AST

Lexer

IR
Generator

IR

Errors

• Checks grammatical correctness of the stream of words/tokens
produced by the lexer

• Outputs the AST (Abstract Syntax Tree) which represents the
input program

2

Table of contents

Context-Free Grammar (CFG)

Recursive-Descent Parsing

Writing a Parser

LL(K) grammars

Need for lookahead

LL(1) property

LL(K)

Problems with LL(k) parsers

3

Context-Free Grammar (CFG)

Motivation

As seen in previous lecture, regular expressions provide a compact
way of defining a language.

Example:
r e g i s t e r : : = ’ r ’ (’ 0 ’ | ’ 1 ’ | . . . | ’ 9 ’) (’ 0 ’ | ’ 1 ’ | . . . | ’ 9 ’) ∗

In this lecture, we move beyond regular expressions and study how
to write a recursive descent parser for the more general class of
Context-Free Grammars (CFGs).

As a first step, we will see how any regular expression can be
systematically translated into an equivalent context-free grammar,
without relying on BNF notation.

4

Context-Free Grammar (CFG)

Definition
A Context-Free Grammar G is a quadruple (S,N, T,P) where:

• S is a start symbol
• N is a set of non-terminal symbols
• T is a set of terminal symbols or words
• P is a set of production or rewrite rules where only a single
non-terminal appears on the left-hand side P : N→ (N ∪ T)∗

5

From Regular Expression to Context-Free Grammar

• Kleene closure A∗:
replace A∗ to Arep in all production rules and add
Arep = A Arep | ε
as a new production rule.

• Positive closure A+:
replace A+ to Arep in all production rules and add
Arep = A Arep|A
as a new production rule.

• Option [A]:
replace [A] to Aopt in all production rules and add
Aopt = A | ε
as a new production rule.

6

Example: function call
f unca l l : : = IDENT ” (” [IDENT (” , ” IDENT)∗] ”) ”

after removing the option:
f unca l l : : = IDENT ” (” a r g l i s t ”) ”
a r g l i s t : : = IDENT (” , ” IDENT)∗

| ε

after removing the closure:
f unca l l : : = IDENT ” (” a r g l i s t ”) ”
a r g l i s t : : = IDENT argrep

| ε

argrep : : = ” , ” IDENT argrep
| ε

7

Recursive-Descent Parsing

Main idea

Steps to derive a syntactic analyser (i.e. half a parser) for a context
free grammar expressed in an EBNF style:

• Convert all the regular expressions as seen;
• Implement a function for each non-terminal symbol A.
This function recognises sentences derived from A;

• Recursion in the grammar corresponds to recursive calls of the
created functions.

This technique is called recursive-descent parsing or predictive
parsing.

8

Recursive-Descent Parsing

Writing a Parser

Parser class (pseudo-code)
Token currentToken ;

void er ror (Category . . . expected) { /* . . . */ }

boolean accept (Category . . . expected) {
return (currentToken ∈ expected) ;

}

void expect (Category . . . expected) {
i f (accept (expected))

nextToken () ; // modif ies currentToken
else
er ror (expected) ;

}

9

CFG for function call
f unca l l : : = IDENT ” (” a r g l i s t ”) ”
a r g l i s t : : = IDENT argrep

| ε

argrep : : = ” , ” IDENT argrep
| ε

Recursive-Descent Parser
void parseFunCal l () {
expect (IDENT) ;
expect (LPAR) ;
pa r seArgL i s t () ;
expect (RPAR) ;

}

void parseArgL i s t () {
i f (accept (IDENT)) {
nextToken () ;
parseArgRep () ;

}
// e lse nothing to do

}

void parseArgRep () {
i f (accept (COMMA)) {
nextToken () ;
expect (IDENT) ;
parseArgRep () ;

}
// e lse nothing to do

} 10

Recursive vs Iterative approaches

Project hint: you can keep the EBNF syntax and use an iterative
(rather than recursive) approach as this might simplify your code.

Example: function call
f unca l l : : = IDENT ” (” [IDENT (” , ” IDENT)∗] ”) ”

Recursive-Descent Parser with iterations
void parseFunCal l () {
expect (IDENT) ;
expect (LPAR) ;
i f (accept (IDENT)) {
nextToken () ;
while (accept (COMMA)) {
nextToken () ;
expect (IDENT) ;

}
}
expect (RPAR) ;

}
11

LL(K) grammars

LL(K) grammars

Need for lookahead

Consider the following bit of grammar
stmt : : = ass ign ” ; ”

| f unca l l ” ; ”
f unca l l : : = IDENT ” (” a r g l i s t ”) ”
ass ign : : = IDENT ”= ” exp

void parseAssign () {
expect (IDENT) ;
expect (EQ) ;
parseExp () ;

}

void parseStmt () {
???

}

void parseFunCal l () {
expect (IDENT) ;
expect (LPAR) ;
pa r seArgL i s t () ;
expect (RPAR) ;

}

If the parser picks the wrong production, it may have to backtrack.
Alternative is to look ahead to pick the correct production.

12

LL(K) grammars

LL(1) property

How much lookahead is needed?

• In general, an arbitrarily large amount

Fortunately:

• Large subclasses of CFGs can be parsed with limited lookahead
• Most programming language constructs fall in those subclasses

Among the interesting subclasses are LL(1) grammars.

LL(1)
Left-to-Right parsing;
Leftmost derivation; (i.e. apply production for leftmost non-terminal first)
only 1 current symbol required for making a decision.

13

Basic idea: given A→ α|β, the parser should be able to choose
between α and β.

First sets
For some symbol α ∈ N ∪ T , define First(α) as the set of symbols
that appear first in some string that derives from α:

x ∈ First(α) iif α → · · · → xγ, for some γ

The LL(1) property: if A→ α and A→ β both appear in the grammar,
we would like:

First(α) ∩ First(β) = ∅

This would allow the parser to make the correct choice with a
lookahead of exactly one symbol! (almost, see next slide!)

14

What about ε-productions (the ones that consume no symbols)?

G : : = C b
C : : = A

| B
A : : = a

| ε

B : : = b

input1: ab
input2: b

Both inputs are correct.

However, when seeing the b in the second example, the parser does
not know whether to go down the A derivation or B derivation:

• In the case of A, we could choose the ε and consume nothing,
and the b will be consumed in G (which is the only valid
derivation);

• In the case of B, we could directly consume the b, but then we
will have a problem later on and would need to backtrack.

Therefore, the parser may have to backtrack since it needs to try out
different paths.

15

If A→ α and A→ β and ε ∈ First(α), then we need to ensure that
First(β) is disjoint from Follow(α).

Follow(α) is the set of all terminal symbols in the grammar that can
legally appear immediately after α.
(See EaC§3.3 for details on how to build the First and Follow sets.)

Let’s define First+(α) as:

• First(α) ∪ Follow(α), if ε ∈ First(α)
• First(α) otherwise

LL(1) grammar
A grammar is LL(1) iff A→ α and A→ β implies:

First+(α) ∩ First+(β) = ∅

16

Given a grammar that has the LL(1) property:

• each non-terminal symbols appearing on the left hand side is
recognised by a simple routine;

• the code is both simple and fast.

Predictive Parsing
Grammar with the LL(1) property are called predictive grammars
because the parser can “predict” the correct expansion at each
point. Parsers that capitalise on the LL(1) property are called
predictive parsers. One kind of predictive parser is the recursive
descent parser.

17

LL(K) grammars

LL(K)

Sometimes, we might need to lookahead one or more tokens.

LL(2) Grammar Example
stmt : : = ass ign ” ; ”

| f unca l l ” ; ”
f unca l l : : = IDENT ” (” a r g l i s t ”) ”
ass ign : : = IDENT ”= ” exp

void parseStmt () {
i f (accept (IDENT)) {
i f (lookAhead (1) == LPAR)
parseFunCal l () ;

else i f (lookAhead (1) == EQ)
parseAssign () ;

else
er ror () ;

}
else
er ror () ;

}

18

Problems with LL(k) parsers

Non-distinct first set in the grammar

Example
Exp : : = Ident | Number | Ident ” [” Exp ”] ”
Stmt : : = Assign

| Exp ” ; ”
Ass ign : : = Exp ” = ” Exp ” ; ”

How do you choose between assignment or expression?
void parseStmt () {

i f (accept (f i r s t (Exp) ? ?))
parseAssign () ;

else i f (accept (f i r s t (Exp) ? ?))
parseExp () ;

}

What about using a lookahead?
⇒ not possible since Exp can be of any length.

19

Left factorization

Rewrite : A→ αβ|αγ| . . .
Into:
A→ αA′

A′ → (β|γ)
May need to apply this indirectly.

Stmt : : = Assign
| Exp ” ; ”

Ass ign : : = Exp ” = ” Exp ” ; ”

becomes:

Stmt : : = Exp Stmt ’
Stmt ’ : : = Ass ign | ” ; ”
Ass ign : : = ” = ” Exp ” ; ”

void parseStmt () {
parseExp () ;
parseStmtPrime () ;

}

void parseStmtPrime () {
i f (accept (EQUAL))
parseAssign () ;

else
expect (SC) ;

}

void parseAssign () {
expect (EQUAL) ;
parseExp () ;
expect (SC) ;

}

20

Beware of left recursion!

Left Recursion
Expr : : = Expr Op Expr

| ” (” Expr ”) ”
| Number

Op : : = ’ + ’ | ’* ’

void parseExpr () {
i f (accept (LPAR , DIGIT))
parseExpr () ;
parseOp () ;
parseExpr () ;

else i f (accept (LPAR)) {
expect (LPAR) ;
parseExpr () ;
expect (RPAR) ;

}
else i f (accept (DIGIT))
parseNumber () ;

}

Example input: 1+1
Infinite recursion!

21

Removing Left Recursion

You can use the following rule to remove direct left recursion:

A→ Aα1|Aα2| . . . |Aαm|β1|β2| . . . |βn
where βi does not start with an A and αi 6= ε

can be rewritten into:

A→ β1A′|β2A′| . . . |βnA′

A′ → α1A′|α2A′| . . . |αmA′|ε

Hint
Use this to deal with binary operators, arrayaccess and
fieldaccess in the project

22

Left recursive grammar
Expr : : = Expr Op Expr

| ” (” Expr ”) ”
| Number

Op : : = ’ + ’ | ’* ’

Equivalent non-left recursive
grammar
Expr : : = ” (” Expr ”) ” Expr ’

| Number Expr ’
Expr ’ : : = Op Expr Expr ’

| ε

Op : : = ” + ” | ”* ”

void parseExpr () {
i f (accept (LPAR)) {
expect (LPAR) ;
parseExpr () ;
expect (RPAR) ;
parseExprPrime () ;

}
else i f (accept (DIGIT)) {
parseNumber () ;
parseExprPrime () ;

}
else
expect (LPAR , DIGIT) ;

}

void parseExprPrime () {
i f (accept (PLUS , TIMES) {
parseOp () ;
parseExpr () ;
parseExprPrime () ;

}
}

All is good now! 23

Recap

To write a recursive descent parser, follow these steps:

1. Express the language syntax as an LL(k) CFG;
2. Left factorize the grammar if necessary;
3. Remove left recursion from the grammar if present;
4. Write the recursive parser using at most k lookaheads.

Your parser will never have to backtrack!
⇒ O(N) time complexity, hurray!

24

Next lecture

• Bottom-up parsing

25

	Context-Free Grammar (CFG)
	Recursive-Descent Parsing
	Writing a Parser

	LL(K) grammars
	Need for lookahead
	LL(1) property
	LL(K)

	Problems with LL(k) parsers

