Compiler design

Lecture 6: Bottom-Up Parsing
(EaC§3.4)

Timestamp: 2026/01/20 16:36:00

Christophe Dubach
Winter 2026

Top-Down Parser

A Top-Down parser builds a derivation by working from 1'_
the start symbol to the input sentence. -—

Bottom-Up Parser

A Bottom-Up parser builds a derivation by working from T'_
the input sentence back to the start symbol. —

Bottom-Up Parsing

Example: CFG
Goal :== aABe

A == Abc
A = b
B w=d

Input: abbcde

Bottom-Up Parsing
abbcde

Bottom-Up Parsing

Example: CFG
Goal == aABe
A == Abc

Input: abbcde

Bottom-Up Parsing

abbcde
aAbcde

Bottom-Up Parsing

Example: CFG
Goal :== aABe

Input: abbcde

Bottom-Up Parsing

abbcde
aAbcde
aAde

Bottom-Up Parsing

Example: CFG
Goal :== aABe
A = Abc
A = b

Input: abbcde

Bottom-Up Parsing

abbcde

aAbcde
aAde
aABe

Bottom-Up Parsing

Example: CFG

== Abc
b
d

Input: abbcde

Bottom-Up Parsing

abbcde
aAbcde
aAde

Goal

Bottom-Up Parsing

Example: CFG
Goal :== aABe

A == Abc
A = b
B w=d

Input: abbcde

Bottom-Up Parsing

abbcde
aAbcde
productions aAde reductions
aABe
Goal

Note that the production follows a derivation.

Leftmost vs Rightmost derivation

Leftmost vs Rightmost derivation

Example: CFG
Goal == aABe

A= Abc|b
B = d
Leftmost derivation Rightmost derivation
alABe aABe
aAbcBe aAde
abbcBe aAbcde
abbcde abbcde

LL parsers LR parsers

Shift-Reduce Parser

Shift-reduce parser

- It consists of a stack and the input
- It uses four actions:
1. shift: next symbol is shifted onto the stack
2. reduce: pop the symbols Yy, ..., Y; from the stack that form the
right member of a production X ::= Y,,..., Y,
3. accept: stop parsing and report success
4. error: error reporting routine

How does the parser know when to shift or when to reduce?

Similarly to a top-down parser, could back-track if wrong decision
made or look ahead to decide.

Can build a PDA to decide when we should shift or reduce
(will not see the construction process in this course).

The PDA recognizes handles on the stack: i.e. parts of inputs that can
be reduced.

Handle-recognizer PDA (PushDown Automata)

Example CFG
Goal :== aABe
A = Abcl|b
B == d

Corresponding handle-recognizer PDA:

e
@—> Goal:=aABe

In states {s3,s4,56,58}, we reduce.

Shift-reduce parser

Example: CFG
Goal :== aABe

A == Abc| b

B w=d

Operation:
Input Stack State
abbcde S0

e
@—> Goal:=aABe
B,

Shift-reduce parser

Example: CFG
Goal :== aABe
A == Abclb
B == d

Operation: shift

Input Stack State
bbcde a s

e
@—> Goal:=aABe
B,

Shift-reduce parser

Example: CFG
Goal :== aABe
A = Abcl|b
B == d

Operation: shift

Input Stack State
bcde ab s3

e
@—> Goal:=aABe
B,

Shift-reduce parser

Example: CFG
Goal :== aABe

A == Abc| b

B w=d

Operation:
Input Stack State
bcde ab s3

e
@—> Goal:=aABe
B,

Shift-reduce parser

Example: CFG
Goal :== aABe
A = Abcl|b
B == d

Operation: reduce

Input Stack State
bcde aA s2

e
@—> Goal:=aABe
B,

Shift-reduce parser

Example: CFG
Goal :== aABe
A == Abclb
B == d

Operation: shift

Input Stack State
cde aAb S5

e
@—> Goal:=aABe
B,

Shift-reduce parser

Example: CFG
Goal :== aABe

A == Abclb

B w=d

Operation:
Input Stack State
cde aAb S5

e
@—> Goal:=aABe
B,

Shift-reduce parser

Example: CFG
Goal :== aABe
A = Abcl|b
B == d

Operation: shift

Input Stack State
de aAbc S6

e
@—> Goal:=aABe
B,

Shift-reduce parser

Example: CFG
Goal :== aABe

A == Abc| b

B w=d

Operation: reduce
Input Stack State
de aA s2

e
@—> Goal:=aABe
B,

Shift-reduce parser

Example: CFG
Goal :== aABe

A == Abc| b

B w=d

Operation: shift
Input Stack State
e aAd Sk

e
@—> Goal:=aABe
B,

Shift-reduce parser

Example: CFG
Goal :== aABe

A = Abcl|b

B w=d

Operation: reduce
Input Stack State
e aAB s7

e
:)—> Goal:=aABe
B .~

Shift-reduce parser

Example: CFG
Goal :== aABe

A = Abc|b
B = d
Operation: shift
Stack State
Input
aABe s8

e
:)—> Goal:=aABe
B .~

Shift-reduce parser

Example: CFG
Goal :== aABe

A == Abc| b
B w=d
Operation: reduce
Stack State
Input
Goal S8

e
@—> Goal:=aABe
B,

Top-Down vs Bottom-Up Parsing

Top-Down / LL parsers (e.g. recursrive descent parser)

sl Easy to write by hand
sl Easy to integrate with the compiler

'@ Supports a smaller class of grammars

= cannot handle left recursion in the grammar
'@ Recursion might lead to performance issues

sl Table encoding possible for better performance

Top-Down vs Bottom-Up Parsing

Top-Down / LL parsers (e.g. recursrive descent parser)

sl Easy to write by hand
sl Easy to integrate with the compiler

'@ Supports a smaller class of grammars

= cannot handle left recursion in the grammar
'@ Recursion might lead to performance issues

sl Table encoding possible for better performance

Bottom-Up / LR parsers (e.g. shift-reduce parser)

sl Very efficient (no recursion)
sl Supports a larger class of grammar
Handles left/right recursion in the grammar

'@ Harder to write by hand
=-Requires generation tools
'@ Hard to integrate in compiler

Real-world examples of parser technology used

Parser generators:

- YACC: bottom up (LR)
- ANTLR: recursive descent (LL)
- JavaCC: recursive descent (LL)

C compilers

- LLVM: hand-written recursive descent parser (LL)
- GCC: started with parser generator (YACC = LR),
now uses hand-written recursive descent (LL)

Java compilers

- Eclipse compiler frontend:

auto-generated using Jikes Parser Generator, bottom-up (LR)
- Intelli) compiler frontend: hand-written recursive descent (LL)
- Open)DK compiler frontend:

hand-written recursive descent (LL)
https://github.com/openjdk/jdk/blob/master/src/jdk.compiler/share/classes/com/sun/tools/javac/ 9
parser/JavacParser.java

https://github.com/openjdk/jdk/blob/master/src/jdk.compiler/share/classes/com/sun/tools/javac/parser/JavacParser.java
https://github.com/openjdk/jdk/blob/master/src/jdk.compiler/share/classes/com/sun/tools/javac/parser/JavacParser.java

Expressive Power of Grammars

/~ Context-Free Grammars

(r

Lo) LR(k))

\ /
\ ,

N

Language L = a"b".
LL(1) grammar:

S = asShb
| €

It is not possible to turn this grammar into a regular one.

1

Language vs. Grammar

/" Context-Free Grammars

T LR(K)
LL(T) LA()

A language can be defined by more than one grammar

These grammars might be of different “complexity”
(L), Ledk), LR(k))

= Language complexity = grammar complexity

Next lecture

- Parse tree and abstract syntax tree

	Leftmost vs Rightmost derivation
	Shift-Reduce Parser

