
Compiler design
Lecture 6: Bottom-Up Parsing
(EaC§3.4)

Christophe Dubach
Winter 2026

Timestamp: 2026/01/20 16:36:00

1



Top-Down Parser

A Top-Down parser builds a derivation by working from
the start symbol to the input sentence. SORT-AMOUNT-DOWN-ALT

Bottom-Up Parser

A Bottom-Up parser builds a derivation by working from
the input sentence back to the start symbol. SORT-AMOUNT-UP-ALT

2



Bottom-Up Parsing

Example: CFG
Goal ::= a A B e

A ::= A b c

A ::= b

B ::= d

Input: abbcde

Bottom-Up Parsing

abbcde

aAbcde
aAde
aABe
Goal

Note that the production follows a rightmost derivation.

3



Bottom-Up Parsing

Example: CFG
Goal ::= a A B e

A ::= A b c

A ::= b

B ::= d

Input: abbcde

Bottom-Up Parsing

abbcde
aAbcde

aAde
aABe
Goal

Note that the production follows a rightmost derivation.

3



Bottom-Up Parsing

Example: CFG
Goal ::= a A B e

A ::= A b c

A ::= b

B ::= d

Input: abbcde

Bottom-Up Parsing

abbcde
aAbcde
aAde

aABe
Goal

Note that the production follows a rightmost derivation.

3



Bottom-Up Parsing

Example: CFG
Goal ::= a A B e

A ::= A b c

A ::= b

B ::= d

Input: abbcde

Bottom-Up Parsing

abbcde
aAbcde
aAde
aABe

Goal

Note that the production follows a rightmost derivation.

3



Bottom-Up Parsing

Example: CFG
Goal ::= a A B e

A ::= A b c

A ::= b

B ::= d

Input: abbcde

Bottom-Up Parsing

abbcde
aAbcde
aAde
aABe
Goal

Note that the production follows a rightmost derivation.

3



Bottom-Up Parsing

Example: CFG
Goal ::= a A B e

A ::= A b c

A ::= b

B ::= d

Input: abbcde

Bottom-Up Parsing

productions

abbcde
aAbcde
aAde
aABe
Goal

reductions

Note that the production follows a rightmost derivation.
3



Leftmost vs Rightmost derivation



Leftmost vs Rightmost derivation

Example: CFG
Goal ::= a A B e

A ::= A b c | b

B ::= d

Leftmost derivation
Goal
aABe
aAbcBe
abbcBe
abbcde

LL parsers

Rightmost derivation
Goal
aABe
aAde
aAbcde
abbcde

LR parsers

4



Shift-Reduce Parser



Shift-reduce parser

• It consists of a stack and the input
• It uses four actions:

1. shift: next symbol is shifted onto the stack
2. reduce: pop the symbols Yn, . . . , Y1 from the stack that form the
right member of a production X ::= Yn, . . . , Y1

3. accept: stop parsing and report success
4. error: error reporting routine

How does the parser know when to shift or when to reduce?

Similarly to a top-down parser, could back-track if wrong decision
made or look ahead to decide.

Can build a PDA to decide when we should shift or reduce
(will not see the construction process in this course).

The PDA recognizes handles on the stack: i.e. parts of inputs that can
be reduced.

5



Handle-recognizer PDA (PushDown Automata)

Example CFG
Goal ::= a A B e

A ::= A b c | b

B ::= d

Corresponding handle-recognizer PDA:

s0 s1 s2

s3 s4

s5 s6

s7 s8

A::=b B::=d

Goal::=aABe

A::=Abc
a A

b d

b

B

c

e

In states {s3,s4,s6,s8}, we reduce.
6



Shift-reduce parser

Example: CFG
Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation:

Input
abbcde

Stack State
s0

s0 s1 s2

s3 s4

s5 s6

s7 s8

A::=b B::=d

Goal::=aABe

A::=Abc
a A

b d

b

B

c

e

7



Shift-reduce parser

Example: CFG
Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: shift

Input
bbcde

Stack
a

State
s1

s0 s1 s2

s3 s4

s5 s6

s7 s8

A::=b B::=d

Goal::=aABe

A::=Abc
a A

b d

b

B

c

e

7



Shift-reduce parser

Example: CFG
Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: shift

Input
bcde

Stack
ab

State
s3

s0 s1 s2

s3 s4

s5 s6

s7 s8

A::=b B::=d

Goal::=aABe

A::=Abc
a A

b d

b

B

c

e

7



Shift-reduce parser

Example: CFG
Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation:

Input
bcde

Stack
ab

State
s3

s0 s1 s2

s3 s4

s5 s6

s7 s8

A::=b B::=d

Goal::=aABe

A::=Abc
a A

b d

b

B

c

e

7



Shift-reduce parser

Example: CFG
Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: reduce

Input
bcde

Stack
aA

State
s2

s0 s1 s2

s3 s4

s5 s6

s7 s8

A::=b B::=d

Goal::=aABe

A::=Abc
a A

b d

b

B

c

e

7



Shift-reduce parser

Example: CFG
Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: shift

Input
cde

Stack
aAb

State
s5

s0 s1 s2

s3 s4

s5 s6

s7 s8

A::=b B::=d

Goal::=aABe

A::=Abc
a A

b d

b

B

c

e

7



Shift-reduce parser

Example: CFG
Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation:

Input
cde

Stack
aAb

State
s5

s0 s1 s2

s3 s4

s5 s6

s7 s8

A::=b B::=d

Goal::=aABe

A::=Abc
a A

b d

b

B

c

e

7



Shift-reduce parser

Example: CFG
Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: shift

Input
de

Stack
aAbc

State
s6

s0 s1 s2

s3 s4

s5 s6

s7 s8

A::=b B::=d

Goal::=aABe

A::=Abc
a A

b d

b

B

c

e

7



Shift-reduce parser

Example: CFG
Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: reduce

Input
de

Stack
aA

State
s2

s0 s1 s2

s3 s4

s5 s6

s7 s8

A::=b B::=d

Goal::=aABe

A::=Abc
a A

b d

b

B

c

e

7



Shift-reduce parser

Example: CFG
Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: shift

Input
e

Stack
aAd

State
s4

s0 s1 s2

s3 s4

s5 s6

s7 s8

A::=b B::=d

Goal::=aABe

A::=Abc
a A

b d

b

B

c

e

7



Shift-reduce parser

Example: CFG
Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: reduce

Input
e

Stack
aAB

State
s7

s0 s1 s2

s3 s4

s5 s6

s7 s8

A::=b B::=d

Goal::=aABe

A::=Abc
a A

b d

b

B

c

e

7



Shift-reduce parser

Example: CFG
Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: shift

Input Stack
aABe

State
s8

s0 s1 s2

s3 s4

s5 s6

s7 s8

A::=b B::=d

Goal::=aABe

A::=Abc
a A

b d

b

B

c

e

7



Shift-reduce parser

Example: CFG
Goal ::= a A B e

A ::= A b c | b

B ::= d

Operation: reduce

Input Stack
Goal

State
s8

s0 s1 s2

s3 s4

s5 s6

s7 s8

A::=b B::=d

Goal::=aABe

A::=Abc
a A

b d

b

B

c

e

7



Top-Down vs Bottom-Up Parsing

Top-Down / LL parsers (e.g. recursrive descent parser)
THUMBS-UP Easy to write by hand
THUMBS-UP Easy to integrate with the compiler

THUMBS-DOWN Supports a smaller class of grammars
⇒ cannot handle left recursion in the grammar

THUMBS-DOWN Recursion might lead to performance issues
THUMBS-UP Table encoding possible for better performance

Bottom-Up / LR parsers (e.g. shift-reduce parser)
THUMBS-UP Very efficient (no recursion)
THUMBS-UP Supports a larger class of grammar

Handles left/right recursion in the grammar

THUMBS-DOWN Harder to write by hand
⇒Requires generation tools

THUMBS-DOWN Hard to integrate in compiler

8



Top-Down vs Bottom-Up Parsing

Top-Down / LL parsers (e.g. recursrive descent parser)
THUMBS-UP Easy to write by hand
THUMBS-UP Easy to integrate with the compiler

THUMBS-DOWN Supports a smaller class of grammars
⇒ cannot handle left recursion in the grammar

THUMBS-DOWN Recursion might lead to performance issues
THUMBS-UP Table encoding possible for better performance

Bottom-Up / LR parsers (e.g. shift-reduce parser)
THUMBS-UP Very efficient (no recursion)
THUMBS-UP Supports a larger class of grammar

Handles left/right recursion in the grammar

THUMBS-DOWN Harder to write by hand
⇒Requires generation tools

THUMBS-DOWN Hard to integrate in compiler
8



Real-world examples of parser technology used

Parser generators:

• YACC: bottom up (LR)
• ANTLR: recursive descent (LL)
• JavaCC: recursive descent (LL)

C compilers

• LLVM: hand-written recursive descent parser (LL)
• GCC: started with parser generator (YACC⇒ LR),
now uses hand-written recursive descent (LL)

Java compilers

• Eclipse compiler frontend:
auto-generated using Jikes Parser Generator, bottom-up (LR)

• IntelliJ compiler frontend: hand-written recursive descent (LL)
• OpenJDK compiler frontend:
hand-written recursive descent (LL)
https://github.com/openjdk/jdk/blob/master/src/jdk.compiler/share/classes/com/sun/tools/javac/
parser/JavacParser.java 9

https://github.com/openjdk/jdk/blob/master/src/jdk.compiler/share/classes/com/sun/tools/javac/parser/JavacParser.java
https://github.com/openjdk/jdk/blob/master/src/jdk.compiler/share/classes/com/sun/tools/javac/parser/JavacParser.java


Expressive Power of Grammars

Context-Free Grammars

LR(1)LL(1)

RG

LL(k) LR(k)

10



Example

Language L = anbn.

LL(1) grammar:
S : : = a S b

| ε

It is not possible to turn this grammar into a regular one.

11



Language vs. Grammar

Context-Free Grammars

LR(1)LL(1)

RG

LL(k) LR(k)

Language 6= Grammar

• A language can be defined by more than one grammar
• These grammars might be of different “complexity”
(LL(1), LL(k), LR(k))

• ⇒ Language complexity 6= grammar complexity

12



Next lecture

• Parse tree and abstract syntax tree

13


	Leftmost vs Rightmost derivation
	Shift-Reduce Parser

