
Compiler Design
Lecture 2: The view from 35000 feet

Christophe Dubach
Winter 2026

Timestamp: 2026/01/03 16:24:00

1

First Compilers & Programming
Languages

First “Compiler”: 1952

First “compiler”: A-0 System. The term “compiler” was coined by
Grace Hopper in the 1950s.

Automatic Coding for Digital Computers,
Grace Hopper, 1955:

“Compiling [...] which withdraw sub-
routines from a library and operate
upon them, finally linking the pieces
together to deliver, as output, a com-
plete specific program.” Grace Hopper,

US Navy
source: James S. Davis - Image released by the United States Navy with the ID DN-SC-84-05971

Actually more a sort of linker than what we call a compiler today.

2

https://commons.wikimedia.org/wiki/File:Commodore_Grace_M._Hopper,_USN_(covered)_head_and_shoulders_crop.jpg

Fortran, 1957

• First “high-level” programming language.
• Fortran = Formula translation

Simple Fortran II program
C AREA OF A TRIANGLE − HERON ’ S FORMULA
C INPUT − CARD READER UNIT 5 , INTEGER INPUT
C OUTPUT −
C INTEGER VARIABLES START WITH I , J , K , L ,M OR N

READ (5 , 5 0 1) IA , IB , IC
501 FORMAT(3 I 5)

I F (IA . EQ . 0 . OR . IB . EQ . 0 . OR . IC . EQ . 0) STOP 1
S = (IA + IB + IC) / 2 . 0
AREA = SQRT (S * (S − IA) * (S − IB) * (S − IC))
WRITE (6 , 6 0 1) IA , IB , IC , AREA

601 FORMAT(4H A= , I5 , 5H B= , I5 , 5H C= , I5 ,
8H AREA = , F10 . 2 , $13H SQUARE UNITS)

STOP
END

source: Wikipedia

John Bakus,
IBM

source: PIerre.Lescanne, CC BY-SA 4.0, via Wikimedia Commons

3

https://en.wikibooks.org/wiki/Fortran/Fortran_examples
https://creativecommons.org/licenses/by-sa/4.0

Lisp, 1958

• Lisp = List processing language

Simple Lisp 1 program
((Y (LAMBDA (FN)

(LAMBDA (X)
(I F (ZEROP X) 1 (* X (FN (− X 1)))))))

6)

source: Technical Issues of Separation in Function Cells and Value Cells

John McCarthy,
MIT

source: ”null0”, CC BY-SA 2.0, via Wikimedia Commons

4

http://www.nhplace.com/kent/Papers/Technical-Issues.html
https://creativecommons.org/licenses/by-sa/2.0

Fortran and Lisp are the oldest, and most influencial programming
languages. Both are still in use today!

(Fortran) ImperativeARROWS-ALT-H Functional (Lisp)

• Fortran is imperative: you tell the machine what to do at every
step, pretty much like assembly.

• Lisp is functional: based on Lambda calculus, computation is
performed by “substitution” (at least at the abstract level).

In this class, we will mostly study how imperative languages are
compiled.

But this will also be applicable to functional languages, since
eventually everything has to be turned into sequences of assembly
instructions.

5

High-level view

High-level view of a compiler

Compiler Machine
code

Source
code

Errors

• Must recognise legal (and illegal) programs
• Must generate correct code
• Must manage storage of all variables (and code)
• Must agree with OS & linker on format for object code

Big step up from assembly language; use higher level notations

6

Traditional two-pass compiler

FrontEndSource
code BackEnd

IR

Machine
Code

Errors

• Use an intermediate representation (IR)
• Front end maps legal source code into IR
• Back end maps IR into target machine code
• Admits multiple front ends & multiple passes
• Typically, front end is O(n) or O(n log n),
while back end is NPC (NP-complete)

7

A common fallacy two-pass compiler

Frontend

Target 1

Fortran

Backend

Frontend

Target 2

R

Backend

Frontend

Target 3

Java

Backend

FrontendSmalltalk

• Can we build n x m compilers with n+m components?
• Must encode all language specific knowledge in each front end
• Must encode all features in a single IR
• Must encode all target specific knowledge in each back end
• Limited success in systems with very low-level IRs (e.g. LLVM)
• Active research area (e.g. Graal, Truffle)

8

Front End

Front End

Passes

The Frontend

ScannerSource
code Tokeniser token

char
 Parser AST

Semantic
Analyser

AST

Lexer

IR
Generator

IR

Errors

• Recognise legal (& illegal) programs
• Report errors in a useful way
• Produce IR
• Shape the code for the back end

Much of front end construction can be automated

9

The Lexer

Scanner
Source
code

Tokeniser
token

char

 Parser
AST

Semantic
Analyser

AST

Lexer

IR
Generator

IR

Errors

Lexical analysis

• Recognises words in a character stream
• Produces tokens (words) from lexeme
• Collect identifier information (e.g. variable names)
• Typical tokens include number, identifier, +, −, new, while, if
• Lexer eliminates white space (including comments)

Example: x = y+2;
becomes: IDENTIFIER(x) EQUAL IDENTIFIER(y) PLUS CST(2) SC

10

The Parser

ScannerSource
code Tokeniser token

char
 Parser AST

Semantic
Analyser

AST

Lexer

IR
Generator

IR

Errors

Parsing

• Recognises context-free syntax & reports errors
• Builds an AST (Astract Syntax Tree)
• Hand-coded parsers are fairly easy to build
• Most books advocate using automatic parser generators

In the course project, you will build your own parser

• Will teach you more than using a generator!
• Once you know how to build a parser by hand, using a parser
generator becomes easy

11

Semantic Analyser

Scanner
Source
code

Tokeniser
tokenchar

Parser
AST Semantic

Analyser
AST

Lexer

IR
Generator

IR

Errors

Semantic Analysis

• Guides context-sensitive (“semantic”) analysis
• Checks variable and function declared before use
• Type checking

Type checking example:

i n t foo (i n t a) = { . . . }
void main () {
f l oa t f ;
f = foo (1 , 2) ; // type e r ro r

}

12

Intermediate Representation (IR) Generator

Scanner
Source
code

Tokeniser
token

char

 Parser
AST

Semantic
Analyser

AST

Lexer

IR
Generator

IR

Errors

• Generates the IR (Intermediate Representation) used by the rest
of the compiler.

• Sometimes the AST is the IR.

13

Front End

Representations

Simple Expression Grammar

1 goal → expr
2 expr → expr op term
3 | term
4 term → number
5 | id
6 op → +
7 | −

S = goal
T = { number , id , + , − }
N = { goal , expr , term , op }
P = { 1 , 2 , 3 , 4 , 5 , 6 , 7 }

• This grammar defines simple expressions with addition &
subtraction over “number” and “id”

• This grammar, like many, falls in a class called “Context-Free
Grammars”, abbreviated CFG

14

Derivations

Given a CFG, we can derive sentences by repeated substitution

Productions:

1 goal → expr
2 expr → expr op term
3 | term
4 term → number
5 | id
6 op → +
7 | −

Production Result
goal

1 expr
2 expr op term
5 expr op y
7 expr - y
2 expr op term - y
4 expr op 2 - y
6 expr + 2 - y
3 term + 2 - y
5 x + 2 - y

To recognise a valid sentence in a CFG, we reverse this process and
build up a parse tree

15

Parse tree

x + 2 - y

goal

expr

op termexpr

op termexpr

term

id(x)

+ num(2)

- id(y)

This contains a lot of unnecessary information.

16

Abstract Syntax Tree (AST)

-

+

id(x) num(2)

id(y)

The AST summarises grammatical structure, without including
detail about the derivation.

• Compilers often use an abstract syntax tree
• This is much more concise
• ASTs are one kind of IR

17

Back end

The Back end

Instruction
Selection

IR

Register
Allocation

IR

Instruction
Scheduling

IR

Errors

Machine
code

• Translate IR into target machine code
• Choose instructions to implement each IR operation
• Decide which value to keep in registers
• Ensure conformance with system interfaces
• Automation has been less successful in the back end

18

Back end

Instruction Selection

Instruction Selection

Instruction
Selection

IR

Register
Allocation

IR

Instruction
Scheduling

IR

Errors

Machine
code

• Produce fast, compact code
• Take advantage of target features such as addressing modes
• Usually viewed as a pattern matching problem

Example: d = a * b + c

option 1

MUL rt, ra, rb
ADD rd, rt, rc

option 2

MADD rd, ra, rb, rc

19

Back end

Register Allocation

Register Allocation

Instruction
Selection

IR

Register
Allocation

IR

Instruction
Scheduling

IR

Errors

Machine
code

• Have each value in a register when it is used
• Manage a limited set of resources
• Can change instruction choices &
insert LOADs & STOREs (spilling)

• Optimal allocation is NP-Complete
• Graph colouring problem
• Compilers approximate solutions to NP-Complete problems

20

Back end

Instruction Scheduling

Instruction Scheduling

Instruction
Selection

IR

Register
Allocation

IR

Instruction
Scheduling

IR

Errors

Machine
code

• Avoid hardware stalls and interlocks
• Use all functional units productively
• Can increase lifetime of variables (changing the allocation)
• Optimality:

• Optimal scheduling is NP-Complete in nearly all cases
• Heuristic techniques are well developed

21

Optimiser

Three Pass Compiler

FrontEnd
Source
code

Middle
End

IR
 BackEnd Machine

Code

Errors

IR

Compiler Optimization (or code improvement):

• Analyses IR and rewrites/transforms IR
• Primary goal is to reduce running time of the compiled code

• May also improve code size, power consumption, …

• Must preserve “meaning” of the code
• Measured by values of named variables

• Subject of Compiler Optimisation course

22

The Optimiser

Modern optimisers are structured as a series of passes
e.g. LLVM

Opt
1

IR

IR

Errors

IR

Opt
2

IR
 IR

Opt
N

...

• Discover & propagate some constant value
• Move a computation to a less frequently executed place
• Specialise some computation based on context
• Discover a redundant computation & remove it
• Remove useless or unreachable code
• …

23

Modern Restructuring Compiler

FrontEndSource
code

Middle
End

IR
 BackEnd Machine

Code

Errors

IR

IR
Generator

LL
AST

RestructurerHL
AST

Translate from high-level (HL) IR to low-level (LL) IR

• Blocking for memory hierarchy and data reuse
• Parallelisation (including vectorization)

All of above is based on data dependence analysis

• Also full and partial inlining

Compiler optimizations are not covered in this course

24

Role of the runtime system

• Memory management services
• Allocate, in the heap or on the stack
• Deallocate
• Collect garbage

• Run-time type checking
• Error processing
• Interface to the operating system (input and output)
• Support for parallelism (communication and synchronization)

25

Programs related to compilers

• Pre-processor:
• Produces input to the compiler
• Processes Macro/Directives (e.g. #define, #include)

• Assembler:
• Translate assembly language to actual machine code (binary)
• Performs actual allocation of variables

• Linker:
• Links together various compiled files and/or libraries
• Generate a full program that can be loaded and executed

• Debugger:
• Tight integration with compiler
• Uses meta-information from compiler (e.g. variable names)

• Virtual Machines:
• Executes virtual assembly
• typically embedded a just-in-time (jit) compiler

26

Next lecture

• Introduction to Lexical Analysis (real start of compiler course)
• Decomposition of the input into a stream of tokens
• Construction of scanners from regular expressions

27

	First Compilers & Programming Languages
	High-level view
	Front End
	Passes
	Representations

	Back end
	Instruction Selection
	Register Allocation
	Instruction Scheduling

	Optimiser

