
Compiler Design
Lecture 4: Automatic Lexer Generation
(EaC§2.4)

Christophe Dubach
Winter 2026

Timestamp: 2026/01/11 10:28:00

1

Table of contents

Finite State Automata for Regular Expression

Finite State Automata

Non-determinism

From Regular Expression to Generated Lexer

Regular Expression to NFA

From NFA to DFA

Final Remarks

2

Automatic Lexer Generation

Scanner
Source
code

Tokeniser
token

char

 Parser
AST

Semantic
Analyser

AST

Lexer

IR
Generator

IR

Errors

Starting from a collection of regular expressions (RE) we can
automatically generate a Lexer.

Idea: use a Finite State Automata (FSA) for the construction.

3

Finite State Automata for Regular
Expression

Finite State Automata for Regular
Expression

Finite State Automata

Definition: Finite State Automata
A finite state automata is defined by:

• S, a finite set of states
• Σ, an alphabet, or character set used by the recogniser
• δ(s, c), a transition function
(takes a state and a character as input, and returns new state)

• s0, the initial or start state
• SF , a set of final states (a stream of characters is accepted iif the
automata ends up in a final state)

4

Finite State Automata for Regular Expression

Example: register names
r e g i s t e r : : = ’ r ’ (’ 0 ’ | ’ 1 ’ | . . . | ’ 9 ’) (’ 0 ’ | ’ 1 ’ | . . . | ’ 9 ’) ∗

The RE (Regular Expression) corresponds to a recogniser
(or finite state automata):

s0 s1 s2
’r’

’0’|’1’|...|’9’

’0’|’1’|...|’9’

5

s0 s1 s2
’r’

’0’|’1’|...|’9’

’0’|’1’|...|’9’

Finite State Automata (FSA) operation:

• Start in state s0 and take transitions on each input character
• The FSA accepts a word x iff x leaves it in a final state (s2)

Examples:

• r17 takes it through s0, s1, s2 and accepts
• r takes it through s0, s1 and fails
• a starts in s0 and leads straight to failure

6

Table encoding and skeleton code

To be useful a recogniser must be turned into code:

• Encode the FSM as a table and
• use a generic recogniser program.

s0 s1 s2
’r’

’0’|’1’|...|’9’

’0’|’1’|...|’9’

Table encoding of the FSM

δ ’r’ ’ 0 ’ | ’ 1 ’ | . . . | ’ 9 ’ others
s0 s1 error error
s1 error s2 error
s2 error s2 error

Recogniser program
c = next character
s ta te = s0
while (c 6= EOF)
s ta te = δ(state, c)
c = next character

i f (s ta te f i n a l)
return success

else
return er ro r

7

Finite State Automata for Regular
Expression

Non-determinism

Deterministic Finite Automaton
Each RE corresponds to a Deterministic Finite Automaton (DFA).
However, it might be hard to construct directly.

What about an RE such as (a|b)∗abb ?

s0 s1 s2 s3 s4
ε

a|b

a b b

This is a little different:

• s0 has a transition on ε, which can be followed without
consuming an input character

• s1 has two transitions on a
• This is a Non-determinisitic Finite Automaton (NFA)

8

Non-deterministic vs deterministic finite automata

Deterministic finite state automata (DFA):

• All edges leaving the same node have distinct labels
• There is no ε transition

Non-deterministic finite state automata (NFA):

• Can have multiple edges with same label leaving the same node
• Can have ε transition
• This means we might have to backtrack

s0 s1 s2 s3 s4
ε

a|b

a b b

Example: aabb might lead to backtracking.

9

From Regular Expression to
Generated Lexer

Automatic Lexer Generation

For any regular expression, it is possible to systematically generate a
lexer that does not require backtracking.

This can be done in three steps:

1. Regular Expression (RE)→ Non-deterministic Finite Automata (NFA)

2. NFA→ Deterministic Finite Automata (DFA)

3. DFA→ generated lexer

10

From Regular Expression to
Generated Lexer

Regular Expression to NFA

1st step: RE→ NFA (Ken Thompson, CACM, 1968)

“x′′ s0 s1
x

[M] s0 s1
M
ε

M|N s0

s1 s2

s3 s4

s5

ε

M
ε

ε

N
ε

M N

s0 s1 s2 s3
M ε N

M∗

s0 s1 s2 s3
ε

ε

M ε

ε

M+

s0 s1 s2 s3
ε M ε

ε

11

Example: a(b|c)∗

s0 s1 s2 s3

s4 s5

s6 s7

s8 s9
a ε ε

ε

ε

ε

b
ε

c
ε

ε

ε

12

From Regular Expression to
Generated Lexer

From NFA to DFA

Step 2: NFA→ DFA

Executing a non-deterministic finite automata requires backtracking,
which is inefficient. To overcome this, we want to construct a DFA
from the NFA.

The main idea:

• We build a DFA which has one state for each set of states the
NFA could end up in.

• A set of state is final in the DFA if it contains the final state from
the NFA.

• Since the number of states in the NFA is finite (n), the number of
possible sets of states (i.e. powerset) is also finite:

• maximum 2n (hint: set encoded as binary vectors)

13

Assuming the state of the NFA are labelled si and the states of the
DFA we are building are labelled qi.

We have two key functions:

• reachable(si, α) returns the set of states reachable from si by
consuming character α

• ε-closure(si) returns the set of states reachable from si by ε
(e.g. without consuming a character)

14

The Subset Construction algorithm (Fixed point iteration)
q0 = ε-closure(s0) ; Q = {q0} ; add q0 to WorkL ist
while (WorkL ist not empty)
remove q from WorkList
fo r each α ∈ Σ

subset = ε-closure(reachable(q, α))
δ(q, α) = subset
i f (subset /∈ Q) then
add subset to Q and to WorkList

The algorithm (in English)

• Start from start state s0 of the NFA, compute its ε-closure
• Build subset from all states reachable from q0 for character α
• Add this subset to the transition table/function δ

• If the subset has not been seen before, add it to the worklist
• Iterate until no new subset are created

15

Informal proof of termination

• Q contains no duplicates (test before adding)
• similarly we will never add twice the same subset to the worklist
• bounded number of states; maximum 2n subsets, where n is
number of state in NFA

⇒ the loop halts

End result

• S contains all the reachable NFA states
• It tries each symbol in each si
• It builds every possible NFA configuration

⇒ Q and δ form the DFA

16

NFA→ DFA

a(b|c)∗

s0 s1 s2 s3

s4 s5

s6 s7

s8 s9
a ε ε

ε

ε

ε

b ε

c
ε

ε

ε

ε-closure(reachable(q, α))
NFA states a b c

q0 s0 q1 none none
q1 s1, s2, s3,

s4, s6, s9
none q2 q3

q2 s5, s8, s9,
s3, s4, s6

none q2 q3

q3 s7, s8, s9,
s3, s4, s6

none q2 q3

17

Resulting DFA for a(b|c)∗

DFA

q0 q1

q2

q3

a
b

c

b

c

c

b

Table encoding

a b c
q0 q1 error error
q1 error q2 q3
q2 error q2 q3
q3 error q2 q3

• All transitions are deterministic, no need to backtrack!
• Can generate the lexer using skeleton recogniser seen earlier.

18

The resulting DFA is not “optimal”.

q0 q1

q2

q3

a
b

c

b

c

c

b

It could be even smaller:

s0 s1
a

b|c

Automatic minimization possible
(see EaC§2.4.4 Hopcroft’s Algorithm for minimal DFA).

19

Final Remarks

What can be so hard?

Language design choice can complicate lexing:

• PL/I does not have reserved words (keywords):
if (cond) then then = else; else else = then

where are the variables?
• In Fortran & Algol68 blanks (whitespaces) are insignificant:
do 10 i = 1,25 ∼= do 10 i = 1,25 (loop, 10 is statement label)
do 10 i = 1.25 ∼= do10i = 1.25 (assignment)

• In C,C++,Java string constants can have special characters:
newline, tab, quote, comment delimiters, . . .

20

Good language design makes lexing simpler:

• e.g. identifier cannot start with a digit in most modern languages
⇒ when we see a digit, it can only be the start of a number!

What does a C lexer sees?

u24 ; // i d e n t i f i e r u24
24 ; // signed number 24
24u ; // unsigned number 24

21

Building Lexer

The important point:

• All this technology lets us automate lexer construction
• Implementer writes down regular expressions
• Lexer generator builds NFA, DFA and then writes out code
• This reliable process produces fast and robust lexers

For most modern language features, this works:

• As a language designer you should think twice before
introducing a feature that defeats a DFA-based lexer

• The ones we have seen (e.g. insignificant blanks, non-reserved
keywords) have not proven particularly useful or long lasting

22

Lexer generators input

Example: ANSI-C grammar for tokens

https://www.cs.mcgill.ca/~cs520/2022/resources/
ANSI-C-grammar-l.html

For instance:
(” [” | ” < : ”) { count () ; re turn (’ [’) ; }

23

https://www.cs.mcgill.ca/~cs520/2022/resources/ANSI-C-grammar-l.html
https://www.cs.mcgill.ca/~cs520/2022/resources/ANSI-C-grammar-l.html

Next lecture

Parsing:

• Context-Free Grammars
• Dealing with ambiguity
• Recursive descent parser

24

	Finite State Automata for Regular Expression
	Finite State Automata
	Non-determinism

	From Regular Expression to Generated Lexer
	Regular Expression to NFA
	From NFA to DFA

	Final Remarks

