Compiler Design

Lecture 4: Automatic Lexer Generation
(EaC§2.4)

Christophe Dubach
Winter 2026

Timestamp: 2026/01/11 10:28:00

Table of contents

Finite State Automata for Regular Expression
Finite State Automata

Non-determinism

From Regular Expression to Generated Lexer
Regular Expression to NFA

From NFA to DFA

Final Remarks

Automatic Lexer Generation

Lexer

Source_ |]char[L token[Parser]AST [S ic]AST [IR IR
code J l l | J l Anallyser J lGenelrator]_>

!

Errors

Starting from a collection of regular expressions (RE) we can
automatically generate a Lexer.

Idea: use a Finite State Automata (FSA) for the construction.

Finite State Automata for Regular
Expression

Finite State Automata for Regular
Expression

Finite State Automata

Definition: Finite State Automata
A finite state automata is defined by:

- S, a finite set of states
- ¥, an alphabet, or character set used by the recogniser

- 4(s,¢), a transition function
(takes a state and a character as input, and returns new state)

- Sp, the initial or start state

- Sr, a set of final states (a stream of characters is accepted iif the
automata ends up in a final state)

Finite State Automata for Regular Expression

Example: register names
register := 'r’ ('0’'|"1l..1'9) (Ol]9)

The RE (Regular Expression) corresponds to a recogniser
(or finite state automata):

o1rl.ly

v
0.9

o1y

zr:
;Ovl;,l;lmlfgv

Finite State Automata (FSA) operation:

- Start in state sy and take transitions on each input character
- The FSA accepts a word x iff x leaves it in a final state (s;)

Examples:

- r17 takes it through sg, s, 5, and accepts
- r takes it through sg, s, and fails

- astarts in sp and leads straight to failure

Table encoding and skeleton code

To be useful a recogniser must be turned into code:

- Encode the FSM as a table and
- use a generic recogniser program.
o1y
Recogniser program
c = next character

@ r @ state = sg
o'lrl..l'o while(c # EOF)

state = ¢(state,c)

Table encoding of the FSM ¢ - next character
| 'r | i | others i Gaaiee nal)
return success
So | S error error olse
Sq error Sy error return error

s, | error S5 error

Finite State Automata for Regular
Expression

Non-determinism

Deterministic Finite Automaton
Each RE corresponds to a Deterministic Finite Automaton (DFA).
However, it might be hard to construct directly.

What about an RE such as (alb)*abb ?

alb

This is a little different:

- Sp has a transition on ¢, which can be followed without
consuming an input character

- $¢ has two transitions on a

- This is a Non-determinisitic Finite Automaton (NFA)

Non-deterministic vs deterministic finite automata

Deterministic finite state automata (DFA):

- All edges leaving the same node have distinct labels
- There is no e transition

Non-deterministic finite state automata (NFA):

- Can have multiple edges with same label leaving the same node
- Can have ¢ transition
- This means we might have to backtrack

alb

Example: aabb might lead to backtracking.

From Regular Expression to
Generated Lexer

Automatic Lexer Generation

For any regular expression, it is possible to systematically generate a
lexer that does not require backtracking.

This can be done in three steps:

1. Regular Expression (RE) — Non-deterministic Finite Automata (NFA)
2. NFA — Deterministic Finite Automata (DFA)

3. DFA — generated lexer

From Regular Expression to
Generated Lexer

Regular Expression to NFA

1st step: RE — NFA (Ken Thompson, CACM, 1968)

M N

M) wr
R, GO
M|N E

ool @@\/@Q

1

Example: a(b|c)*

12

From Regular Expression to
Generated Lexer

From NFA to DFA

Step 2: NFA — DFA

Executing a non-deterministic finite automata requires backtracking,
which is inefficient. To overcome this, we want to construct a DFA
from the NFA.

The main idea:

- We build a DFA which has one state for each set of states the
NFA could end up in.

- A set of state is final in the DFA if it contains the final state from
the NFA.

- Since the number of states in the NFA is finite (n), the number of
possible sets of states (i.e. powerset) is also finite:

- maximum 2" (hint: set encoded as binary vectors)

Assuming the state of the NFA are labelled s; and the states of the
DFA we are building are labelled g;.

We have two key functions:

- reachable(s;,) returns the set of states reachable from s; by
consuming character «

- e-closure(s;) returns the set of states reachable from s; by e
(e.g. without consuming a character)

14

The Subset Construction algorithm (Fixed point iteration)
qo = eclosure(sg); Q={qo}; add go to WorkList
while (WorkList not empty)
remove g from WorkList
for each aeXx
subset = e-closure(reachable(q, «))
4(g,) = subset
if (subset¢ Q) then
add subset to Q and to WorkList

The algorithm (in English)
- Start from start state sy of the NFA, compute its e-closure
- Build subset from all states reachable from qo for character «
- Add this subset to the transition table/function §
- If the subset has not been seen before, add it to the worklist
- Iterate until no new subset are created

Informal proof of termination

- Q contains no duplicates (test before adding)

- similarly we will never add twice the same subset to the worklist

- bounded number of states; maximum 2" subsets, where n is
number of state in NFA

= the loop halts

End result
- S contains all the reachable NFA states
- It tries each symbol in each s;
- It builds every possible NFA configuration

= Q and ¢ form the DFA

16

NFA — DFA

a(blc)*

e-closure(reachable(q, «))

NFA states a b C
Jo | So G none none
g1 | $1,52,53, none g2 gs
S4, S6, 59
G2 | Ss,Ss,S9, none g2 gs
S3, S4, Se
g3 | 57,58,59, none g2 gs
S3, 54,56

Resulting DFA for a(b|c)*

DFA Table encoding

bb a b C

Jdo (oF error | error

a

G2 | error | Qgp g3

C
c g |error | a | g

- All transitions are deterministic, no need to backtrack!

- Can generate the lexer using skeleton recogniser seen earlier.

The resulting DFA is not “optimal”.

O=L
b
OOk
C
O=1

It could be even smaller:

b|c

O
Automatic minimization possible
(see EaC§2.4.4 Hopcroft's Algorithm for minimal DFA).

19

Final Remarks

What can be so hard?

Language design choice can complicate lexing:

- PL/I does not have reserved words (keywords):
if (cond) then then = else; else else = then
where are the variables?

- In Fortran & Algol68 blanks (whitespaces) are insignificant:
do10i =125 = do10i = 1,25 (loop, 10 is statement label)
do10 i = 125 2 do10i = 1.25 (assignment)

- In C,C++ Java string constants can have special characters:
newline, tab, quote, comment delimiters, ...

20

Good language design makes lexing simpler:

- e.g. identifier cannot start with a digit in most modern languages
= when we see a digit, it can only be the start of a number!

What does a C lexer sees?

u24; // identifier u24
24; // signed number 24
24u; // unsigned number 24

21

The important point:

- All this technology lets us automate lexer construction
- Implementer writes down regular expressions
- Lexer generator builds NFA, DFA and then writes out code

- This reliable process produces fast and robust lexers
For most modern language features, this works:

- As a language designer you should think twice before
introducing a feature that defeats a DFA-based lexer

- The ones we have seen (e.g. insignificant blanks, non-reserved
keywords) have not proven particularly useful or long lasting

22

Lexer generators input

Example: ANSI-C grammar for tokens

https://www.cs.mcgill.ca/~cs520/2022/resources/
ANSI-C-grammar-1.html

For instance

("1 <m) { count(); return('["); }

23

https://www.cs.mcgill.ca/~cs520/2022/resources/ANSI-C-grammar-l.html
https://www.cs.mcgill.ca/~cs520/2022/resources/ANSI-C-grammar-l.html

Next lecture

Parsing:

- Context-Free Grammars
- Dealing with ambiguity

- Recursive descent parser

24

	Finite State Automata for Regular Expression
	Finite State Automata
	Non-determinism

	From Regular Expression to Generated Lexer
	Regular Expression to NFA
	From NFA to DFA

	Final Remarks

