

Compiler Design

Lecture 4: Automatic Lexer Generation (EaC§2.4)

Christophe Dubach
Winter 2026

Timestamp: 2026/01/11 10:28:00

Table of contents

Finite State Automata for Regular Expression

 Finite State Automata

 Non-determinism

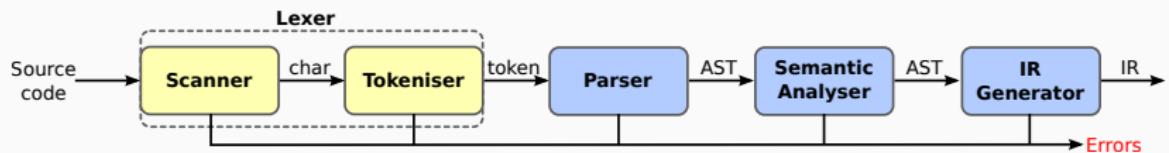
From Regular Expression to Generated Lexer

 Regular Expression to NFA

 From NFA to DFA

Final Remarks

Automatic Lexer Generation



Starting from a collection of regular expressions (RE) we can automatically generate a Lexer.

Idea: use a *Finite State Automata* (FSA) for the construction.

Finite State Automata for Regular Expression

Finite State Automata for Regular Expression

Finite State Automata

Definition: Finite State Automata

A finite state automata is defined by:

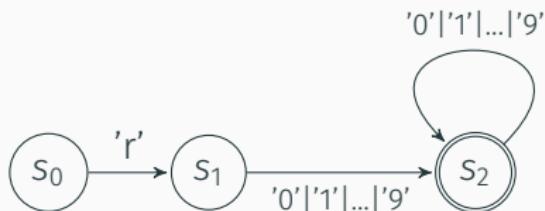
- S , a finite set of states
- Σ , an alphabet, or character set used by the recogniser
- $\delta(s, c)$, a transition function
(takes a state and a character as input, and returns new state)
- s_0 , the initial or start state
- S_F , a set of final states (a stream of characters is accepted iif the automata ends up in a final state)

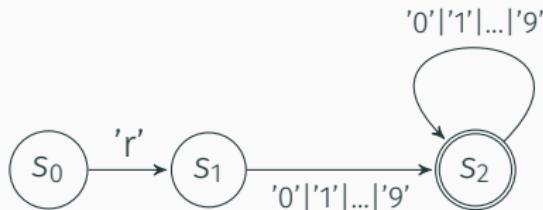
Finite State Automata for Regular Expression

Example: register names

```
register ::= 'r' ('0'|'1'|...|'9') ('0'|'1'|...|'9')*
```

The RE (Regular Expression) corresponds to a recogniser (or finite state automata):





Finite State Automata (FSA) operation:

- Start in state s_0 and take transitions on each input character
- The FSA accepts a word x iff x leaves it in a final state (s_2)

Examples:

- $r17$ takes it through s_0, s_1, s_2 and accepts
- r takes it through s_0, s_1 and fails
- a starts in s_0 and leads straight to failure

Table encoding and skeleton code

To be useful a recogniser must be turned into code:

- Encode the FSM as a table and
- use a generic recogniser program.

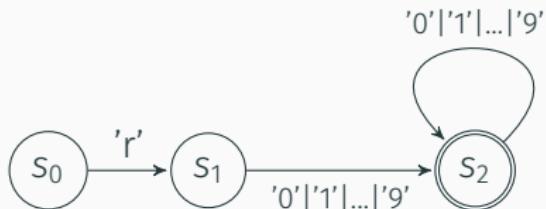


Table encoding of the FSM

δ	'r'	'0' '1' ... '9'	others
S_0	S_1	error	error
S_1	error	S_2	error
S_2	error	S_2	error

Recogniser program

```
c = next character
state =  $S_0$ 
while(c ≠ EOF)
    state =  $\delta(state, c)$ 
    c = next character
if (state final)
    return success
else
    return error
```

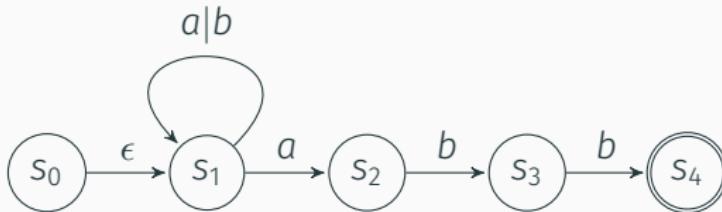
Finite State Automata for Regular Expression

Non-determinism

Deterministic Finite Automaton

Each RE corresponds to a Deterministic Finite Automaton (DFA).
However, it might be hard to construct directly.

What about an RE such as $(a|b)^*abb$?



This is a little different:

- s_0 has a transition on ϵ , which can be followed without consuming an input character
- s_1 has two transitions on a
- This is a Non-deterministic Finite Automaton (NFA)

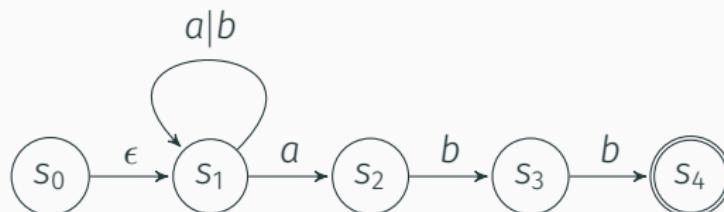
Non-deterministic vs deterministic finite automata

Deterministic finite state automata (DFA):

- All edges leaving the same node have distinct labels
- There is no ϵ transition

Non-deterministic finite state automata (NFA):

- Can have multiple edges with same label leaving the same node
- Can have ϵ transition
- This means we might have to **backtrack**



Example: **aabb** might lead to backtracking.

From Regular Expression to Generated Lexer

Automatic Lexer Generation

For any regular expression, it is possible to systematically generate a lexer that **does not require backtracking**.

This can be done in three steps:

1. Regular Expression (RE) → Non-deterministic Finite Automata (NFA)
2. NFA → Deterministic Finite Automata (DFA)
3. DFA → generated lexer

From Regular Expression to Generated Lexer

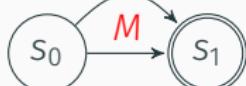
Regular Expression to NFA

1st step: RE \rightarrow NFA (Ken Thompson, CACM, 1968)

“X”

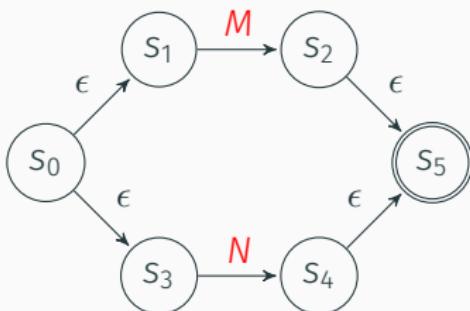
ϵ

[M]

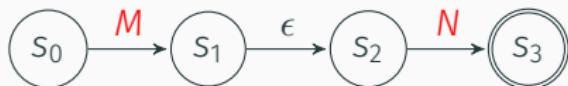


ϵ

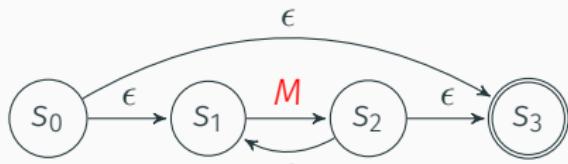
$M|N$



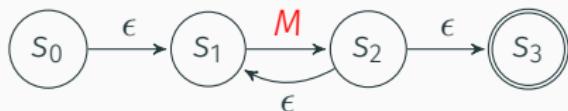
$M \ N$



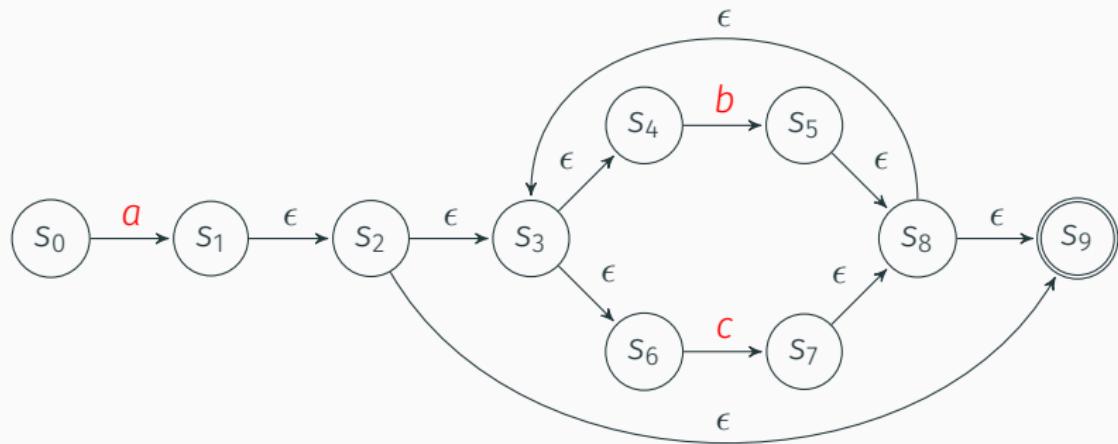
M^*



M^+



Example: $a(b|c)^*$



From Regular Expression to Generated Lexer

From NFA to DFA

Step 2: NFA → DFA

Executing a non-deterministic finite automata requires backtracking, which is inefficient. To overcome this, we want to construct a DFA from the NFA.

The main idea:

- We build a DFA which has one state for each set of states the NFA could end up in.
- A set of state is final in the DFA if it contains the final state from the NFA.
- Since the number of states in the NFA is finite (n), the number of possible sets of states (*i.e.* powerset) is also finite:
 - maximum 2^n (hint: set encoded as binary vectors)

Assuming the state of the NFA are labelled s_i and the states of the DFA we are building are labelled q_i .

We have two key functions:

- $\text{reachable}(s_i, \alpha)$ returns the set of states reachable from s_i by consuming character α
- $\epsilon\text{-closure}(s_i)$ returns the set of states reachable from s_i by ϵ (e.g. without consuming a character)

The Subset Construction algorithm (Fixed point iteration)

```
 $q_0 = \epsilon\text{-closure}(s_0); Q = \{q_0\};$  add  $q_0$  to WorkList
while (WorkList not empty)
    remove  $q$  from WorkList
    for each  $\alpha \in \Sigma$ 
        subset =  $\epsilon\text{-closure}(\text{reachable}(q, \alpha))$ 
         $\delta(q, \alpha) = \text{subset}$ 
        if ( $\text{subset} \notin Q$ ) then
            add subset to  $Q$  and to WorkList
```

The algorithm (in English)

- Start from start state s_0 of the NFA, compute its ϵ -closure
- Build subset from all states reachable from q_0 for character α
- Add this subset to the transition table/function δ
- If the subset has not been seen before, add it to the worklist
- Iterate until no new subset are created

Informal proof of termination

- Q contains no duplicates (test before adding)
- similarly we will never add twice the same subset to the worklist
- bounded number of states; maximum 2^n subsets, where n is number of state in NFA

⇒ the loop halts

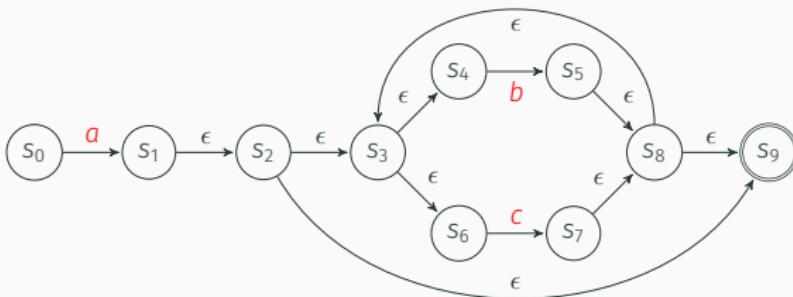
End result

- S contains all the reachable NFA states
- It tries each symbol in each s_i
- It builds every possible NFA configuration

⇒ Q and δ form the DFA

NFA \rightarrow DFA

$a(b|c)^*$



		ϵ -closure(reachable(q, α))		
	NFA states	a	b	c
q_0	S_0	q_1	none	none
q_1	$S_1, S_2, S_3,$ S_4, S_6, S_9	none	q_2	q_3
q_2	$S_5, S_8, S_9,$ S_3, S_4, S_6	none	q_2	q_3
q_3	$S_7, S_8, S_9,$ S_3, S_4, S_6	none	q_2	q_3

Resulting DFA for $a(b|c)^*$

DFA

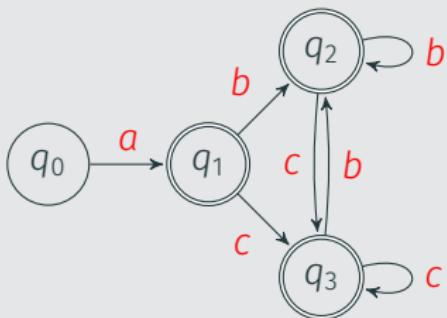
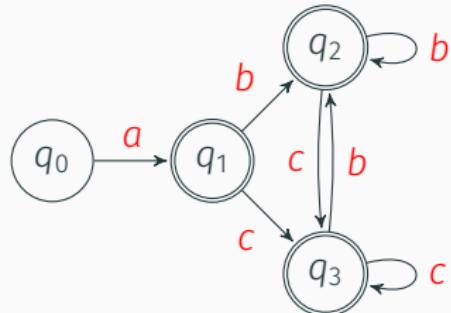


Table encoding

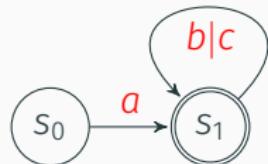
	a	b	c
q_0	q_1	error	error
q_1	error	q_2	q_3
q_2	error	q_2	q_3
q_3	error	q_2	q_3

- All transitions are deterministic, no need to backtrack!
- Can generate the lexer using skeleton recogniser seen earlier.

The resulting DFA is not “optimal”.



It could be even smaller:



Automatic minimization possible
(see Eac§2.4.4 Hopcroft’s Algorithm for minimal DFA).

Final Remarks

What can be so hard?

Language design choice can complicate lexing:

- **PL/I** does not have reserved words (keywords):
if (cond) then then = else; else else = then
where are the variables?
- In **Fortran & Algol68** blanks (whitespaces) are insignificant:
do 10 i = 1,25 \cong do 10 i = 1,25 (loop, 10 is statement label)
do 10 i = 1.25 \cong do10i = 1.25 (assignment)
- In **C,C++,Java** string constants can have special characters:
newline, tab, quote, comment delimiters, ...

Good language design makes lexing simpler:

- e.g. identifier cannot start with a digit in most modern languages
⇒ when we see a digit, it can only be the start of a number!

What does a C lexer sees?

```
u24; // identifier u24
24; // signed number 24
24u; // unsigned number 24
```

Building Lexer

The important point:

- All this technology lets us automate lexer construction
- Implementer writes down regular expressions
- Lexer generator builds NFA, DFA and then writes out code
- This reliable process produces fast and robust lexers

For most modern language features, this works:

- As a language designer you should think twice before introducing a feature that defeats a DFA-based lexer
- The ones we have seen (e.g. insignificant blanks, non-reserved keywords) have not proven particularly useful or long lasting

Lexer generators input

Example: ANSI-C grammar for tokens

<https://www.cs.mcgill.ca/~cs520/2022/resources/ANSI-C-grammar-l.html>

For instance:

```
( "[" | "<:" )           { count(); return( '[' ); }
```

Next lecture

Parsing:

- Context-Free Grammars
- Dealing with ambiguity
- Recursive descent parser