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Action for you

Action
Fill up online project subscription form with your McGill ID and CS
username
(link available on course webpage)
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The Lexer:

• Produces a stream of characters from the source code;
• Separates the stream into lexems — the basic unit of syntax

• A lexem is similar to a “word” in natural languages
• and assigns a syntactic category to each lexem (part of speech)

• For natural languages : noun, verb, adjective, ...
• For programming languages : number, keyword, idenfifier, +, (, ...

• to produce a sequence of tokens (pair of lexem + category)

For instance, x = x+y; is turned by the lexer into:
ID(x) EQ ID(x) PLUS ID(y) SC

Note that the lexer eliminates white spaces (including comments).
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Context-free Language

Context-free syntax is specified with a context-free grammar.

For instance:

SheepNoise → SheepNoise baa
| baa

This grammar defines the set of noises that a sheep makes
(under normal circumstances).

It is written in a variant of Backus–Naur Form (BNF).
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Formally

G = (S,N,T,P) is a grammar where

• S is the start symbol
• N is a set of non-terminal symbols
• T is a set of terminal symbols or words
• P is a set of productions or rewrite rules (P:N→ N ∪ T)

A context-free grammar, abbreviated CFG, is a grammar where the
left hand-side of each production rule only contains a single
non-terminal symbol.
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Example of context-free grammar

1 goal → expr
2 expr → expr op term
3 | term
4 term → number
5 | id
6 op → +
7 | −

S = goal
T = { number , id , + , − }
N = { goal , expr , term , op }
P = { 1 , 2 , 3 , 4 , 5 , 6 , 7 }

This grammar defines simple expressions with addition &
subtraction over “number” and “id”.

Only non-terminal symbols appear on the left hand-side of the rules.

It means we can always produce an expression by subtituting the left
hand-side with any of the choices on the righ hand-side. For
instance:

goal→ expr→ expr op term→ term op term→ number + id
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Example of non-context-free grammar:

A → B
B → b B

| C
b C → c

Let’s try to derive some expressions with this grammar:

• A→ B→ b B→ b b B→ b b C→ b c
• A→ B→ C→ ???

The application of the last rule depends on context.

This means we need to keep track of what has happened in the past
(and we can get stuck)⇒ harder!
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Empty symbol ε

A grammar can also contain a special empty symbol ε

For instance:

1 goal → A | ε

2 A → Aa
3 | a

Recognizes the following set of inputs: {ε,a,aa,aaa, . . .} where ε

represents an empty input.
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Regular Expression

Grammars can often be simplified and shortened using an
augmented BNF notation where:

• x∗ is the Kleene closure : zero or more occurrences of x
• x+ is the positive closure : one or more occurrences of x
• [x] is an option: zero or one occurrence of x

Example: identifier syntax
i d e n t i f i e r : : = l e t t e r ( l e t t e r | d i g i t )*
d i g i t : : = ”0 ” | . . . | ” 9 ”
l e t t e r : : = ” a ” | . . . | ” z ” | ”A ” | . . . | ” Z ”
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Exercise: write the grammar of signed natural number
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Regular Language

Definition
A language is regular if it can be expressed with a single regular
expression or with multiple non-recursive regular expressions.

Regular languages can be used to specify the lexem to be translated
to tokens by the lexer.

Biggest advantage: a regular language can be recognised with a finite
state machine.

Using results from automata theory and theory of algorithms, we can
automatically build recognisers from regular expressions (topic of
next lecture).
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Regular language to program

Given the following:

• c is a lookahead character;
• next() consumes the next character;
• error () quits with an error message; and
• first (exp) is the set of initial characters of exp.

Then we can build a program to recognise a regular language.
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RE pr(RE)
“x′′ if (c == ’x ’) next() else error ();

(exp) pr(exp);

[exp] if (c in first (exp)) pr(exp);

exp∗ while (c in first (exp)) pr(exp);

exp+ pr(exp); while (c in first (exp)) pr(exp);

fact1 . . . factn pr(fact1 ); ... ; pr(factn );

term1| . . . |termn

switch ( c ) {
case c in f i r s t ( term1 ) : pr ( term1 ) ;
case . . . : . . . ;
case c in f i r s t ( termn ) : pr ( termn ) ;
de fau l t : e r ro r ( ) ;

}

RE = Regular Expression, pr = program

This only works if the grammar is left-parsable.

14



Definition: left-parsable
A grammar is left-parsable if:

term1| . . . |termn The terms do not share any initial symbols.

fact1 . . . factn If facti contains the empty symbol then facti
and facti+1 do not share any common initial
symbols.

[exp], exp∗ The initial symbols of exp cannot contain a
symbol which belong to the first set of an ex-
pression following exp.
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Left-parsable grammar examples

G : : = A | B
A : : = ’ a ’ ’ b ’ // f i r s t ( A ) = { ’ a ’ }
B : : = ’ c ’ // f i r s t (B ) = { ’ c ’ }

input : ”ab”

G : : = [ A ] B
A : : = ’ a ’ | ’ b ’ // f i r s t ( A ) = { ’ a ’ , ’ b ’ }
B : : = ’ c ’ // f i r s t (B ) = { ’ c ’ }

input : ”bc”
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Non left-parsable grammar examples

G : : = A | B
A : : = ’ a ’ ’ b ’ // f i r s t ( A ) = { ’ a ’ }
B : : = ’ a ’ ’ c ’ // f i r s t (B ) = { ’ a ’ }

input : ”ac”

G : : = [ A ] B
A : : = ’ a ’ | ’ b ’ // f i r s t ( A ) = { ’ a ’ , ’ b ’ }
B : : = ’ b ’ ’ c ’ // f i r s t (B ) = { ’ b ’ }

input : ”bc”

G : : = A B
A : : = ’ a ’ | ’ b ’ | ε // f i r s t ( A ) = { ’ a ’ , ’ b ’ , ε }
B : : = ’ b ’ ’ c ’ // f i r s t (B ) = { ’ b ’ }

input : ”bc”
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Example: recognizing identifiers

Identifier syntax (example)
i d e n t i f i e r : : = l e t t e r ( l e t t e r | d i g i t )*
d i g i t : : = ”0 ” | . . . | ” 9 ”
l e t t e r : : = ” a ” | . . . | ” z ” | ”A ” | . . . | ” Z ”
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Java-ish Program
void ident ( ) {
i f ( c i s in [ a−zA −Z ] )
l e t t e r ( ) ;

else
er ror ( ) ;

while ( c i s in [ a−zA −Z0 −9 ] ) {
switch ( c ) {
case c i s in [ a−zA −Z ] : l e t t e r ( ) ;
case c i s in [0 −9] : d i g i t ( ) ;
defaul t : e r ro r ( ) ;

} } }

void l e t t e r ( ) {
i f ( c i s in [ a−zA −Z ] ) next ( ) ;
else er ror ( ) ;

}
void d i g i t ( ) {

i f ( c i s in [0 −9 ] ) next ( ) ;
else er ror ( ) ;

}
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More “realistic” Java version
void ident ( ) {
i f ( ( c >= ’ a ’ && c <= ’ z ’ ) | |

( c >= ’ A ’ && c <= ’ Z ’ ) )
next ( ) ;

else
er ror ( ) ;

while ( ( c >= ’ a ’ && c <= ’ z ’ ) | |
( c >= ’ A ’ && c <= ’ Z ’ ) | |
( c >= ’ 0 ’ && c <= ’ 9 ’ ) )

next ( ) ;

which corresponds to this different (equivalent) grammar:

Identifier syntax
i d e n t i f i e r : : = ( ” a ” | . . . | ” z ” | ”A ” | . . . | ” Z ” )

( ” a ” | . . . | ” z ” | ”A ” | . . . | ” Z ” | ”0 ” | . . . | ” 9 ” )*

Two things have happened:

• Use ascii value of characters in real implementation
• The non-terminals have been inlined
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Role of lexical analysiser

The main role of the lexical analyser (or lexer) is to read a bit of the
input and return a token.

Java Lexer class:

c lass Lexer {
publ ic Token nextToken ( ) {
// return the next token , ignor ing white spaces

}
. . .

}

White spaces are usually ignored by the lexer. White spaces are:

• white characters (tabulation, newline, …)
• comments (any character following “//” or enclosed between
“/*” and “*/”
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What is a token?

A token consists of a category and other additional information.

Example of token categories
IDENTIF IER → foo , main , cnt , . . .
NUMBER → 0 , −12 , 1000 , . . .
STRING_LITERAL → ” Hel lo world ! ” , ” a ” , . . .
EQ → ==
ASSIGN → =
PLUS → +
LPAR → (
. . . → . . .

Java Token class:
c lass Token {
Category category ; // Java enumeration
S t r i ng data ; // s tores number or s t r i ng
Pos i t ion pos ; // l i n e /column number in source

}
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Example

Given the following C program:

i n t foo ( i n t i ) {
return i + 2 ;

}

the lexer will return:
INT IDENTIF IER ( ” foo ” ) LPAR INT IDENTIF IER ( ” i ” ) RPAR LBRA
RETURN IDENTIF IER ( ” i ” ) PLUS NUMBER ( ” 2 ” ) SEMICOLON

RBRA
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A Lexer for Simple Arithmetic Expressions

Example: BNF syntax
i d e n t i f i e r : : = l e t t e r ( l e t t e r | d i g i t )*
d i g i t : : = ”0 ” | . . . | ” 9 ”
l e t t e r : : = ” a ” | . . . | ” z ” | ”A ” | . . . | ” Z ”
number : : = d i g i t +
plus : : = ” + ”
minus : : = ” −”
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Example: token definition
c lass Token {

enum Category {
IDENTIF IER
NUMBER ,
PLUS ,
MINUS ,
INVALID

}

// f i e l d s
Category category ;
S t r i ng data ;
Pos i t ion pos i t ion ;

// const ruc tors
Token ( Category cat ) { . . . }
Token ( Category cat , S t r i ng data ) { . . . }
. . .

}
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Example: tokeniser implementation
c lass Tokeniser {

Scanner scanner ;

Token next ( ) {
char c = scanner . next ( ) ;

// skip white spaces
i f ( Character . isWhitespace ( c ) ) return next ( ) ;

i f ( c == ’ + ’ ) return new Token ( Category . PLUS ) ;
i f ( c == ’ − ’ ) return new Token ( Category . MINUS ) ;

// i d e n t i f i e r
i f ( ( c >= ’ a ’ && c <= ’ z ’ ) | | ( c >= ’ A ’ && c <= ’ Z ’ ) ) {
S t r i ngBu i l de r sb = new S t r i ngBu i l de r ( ) ;
sb . append ( c ) ;
c = scanner . peek ( ) ;
while ( ( c >= ’ a ’ && c <= ’ z ’ ) | | ( c >= ’ A ’ && c <= ’ Z ’ ) | |

( c >= ’ 0 ’ && c <= ’ 9 ’ ) ) {
sb . append ( c ) ;
scanner . next ( ) ;
c = scanner . peek ( ) ;

}
return new Token ( Category . IDENTIFIER , sb . t oS t r i ng ( ) ) ;
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Example: continued
// number
i f ( c >= ’ 0 ’ && c <= ’ 9 ’ ) {
S t r i ngBu i l de r sb = new S t r i ngBu i l de r ( ) ;
sb . append ( c ) ;
c = scanner . peek ( ) ;
while ( c >= ’ 0 ’ && c <= ’ 9 ’ ) {
sb . append ( c ) ;
scanner . next ( ) ;
c = scanner . peek ( ) ;

}
return new Token ( Category . NUMBER , sb . t oS t r i ng ( ) ) ;

}

// e lse
er ror ( ) ;
return new Token ( Category . INVALID ) ;

}

}
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Example: continued
// number
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Some grammars are ambiguous.

Example 1
comment : : = ”/* ” .* ”*/” | ”//” .* NEWLINE
div : : = ” / ”

Solution:

Longest matching rule
The lexer should recognized the longest lexeme that corresponds
to the definition.

Project hint: comments are actually considered a special case. Use
peek ahead function from the Scanner, and assume that /* and //
always indicate the start of a comment.
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Some grammars are ambiguous.

Example 2
number : : = [ ” − ” ] d i g i t +
d i g i t : : = ”0 ” | . . . | ” 9 ”
plus : : = ” + ”
minus : : = ” −”

Example input: -9
Is it number or minus number ?

Solution:

Delay to parsing stage
Remove the ambiguity and deal with it during parsing
number : : = d i g i t +
d i g i t : : = ”0 ” | . . . | ” 9 ”
plus : : = ” + ”
minus : : = ” −”
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Next lecture

• Automatic Lexer Generation
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