
Compiler Design
Lecture 3: Introduction to Lexical Analysis

Christophe Dubach
Winter 2026

Timestamp: 2026/01/06 16:51:00

1

Action for you

Action
Fill up online project subscription form with your McGill ID and CS
username
(link available on course webpage)

2

The Lexer

Scanner
Source
code

Tokeniser
tokenchar

Parser
AST Semantic

Analyser
AST

Lexer

IR
Generator

IR

Errors

The Lexer:

• Produces a stream of characters from the source code;
• Separates the stream into lexems — the basic unit of syntax

• A lexem is similar to a “word” in natural languages
• and assigns a syntactic category to each lexem (part of speech)

• For natural languages : noun, verb, adjective, ...
• For programming languages : number, keyword, idenfifier, +, (, ...

• to produce a sequence of tokens (pair of lexem + category)

For instance, x = x+y; is turned by the lexer into:
ID(x) EQ ID(x) PLUS ID(y) SC

Note that the lexer eliminates white spaces (including comments).
3

Table of contents

Languages and Syntax

Context-free Language

Regular Expression

Regular Languages

Lexical Analysis

Building a Lexer

Ambiguous Grammar

4

Languages and Syntax

Languages and Syntax

Context-free Language

Context-free Language

Context-free syntax is specified with a context-free grammar.

For instance:

SheepNoise → SheepNoise baa
| baa

This grammar defines the set of noises that a sheep makes
(under normal circumstances).

It is written in a variant of Backus–Naur Form (BNF).

5

Formally

G = (S,N,T,P) is a grammar where

• S is the start symbol
• N is a set of non-terminal symbols
• T is a set of terminal symbols or words
• P is a set of productions or rewrite rules (P:N→ N ∪ T)

A context-free grammar, abbreviated CFG, is a grammar where the
left hand-side of each production rule only contains a single
non-terminal symbol.

6

Example of context-free grammar

1 goal → expr
2 expr → expr op term
3 | term
4 term → number
5 | id
6 op → +
7 | −

S = goal
T = { number , id , + , − }
N = { goal , expr , term , op }
P = { 1 , 2 , 3 , 4 , 5 , 6 , 7 }

This grammar defines simple expressions with addition &
subtraction over “number” and “id”.

Only non-terminal symbols appear on the left hand-side of the rules.

It means we can always produce an expression by subtituting the left
hand-side with any of the choices on the righ hand-side. For
instance:

goal→ expr→ expr op term→ term op term→ number + id

7

Example of non-context-free grammar:

A → B
B → b B

| C
b C → c

Let’s try to derive some expressions with this grammar:

• A→ B→ b B→ b b B→ b b C→ b c
• A→ B→ C→ ???

The application of the last rule depends on context.

This means we need to keep track of what has happened in the past
(and we can get stuck)⇒ harder!

8

Empty symbol ε

A grammar can also contain a special empty symbol ε

For instance:

1 goal → A | ε

2 A → Aa
3 | a

Recognizes the following set of inputs: {ε,a,aa,aaa, . . .} where ε

represents an empty input.

9

Languages and Syntax

Regular Expression

Regular Expression

Grammars can often be simplified and shortened using an
augmented BNF notation where:

• x∗ is the Kleene closure : zero or more occurrences of x
• x+ is the positive closure : one or more occurrences of x
• [x] is an option: zero or one occurrence of x

Example: identifier syntax
i d e n t i f i e r : : = l e t t e r (l e t t e r | d i g i t)*
d i g i t : : = ”0 ” | . . . | ” 9 ”
l e t t e r : : = ” a ” | . . . | ” z ” | ”A ” | . . . | ” Z ”

10

Exercise: write the grammar of signed natural number

11

Languages and Syntax

Regular Languages

Regular Language

Definition
A language is regular if it can be expressed with a single regular
expression or with multiple non-recursive regular expressions.

Regular languages can be used to specify the lexem to be translated
to tokens by the lexer.

Biggest advantage: a regular language can be recognised with a finite
state machine.

Using results from automata theory and theory of algorithms, we can
automatically build recognisers from regular expressions (topic of
next lecture).

12

Regular language to program

Given the following:

• c is a lookahead character;
• next() consumes the next character;
• error () quits with an error message; and
• first (exp) is the set of initial characters of exp.

Then we can build a program to recognise a regular language.

13

RE pr(RE)
“x′′ if (c == ’x ’) next() else error ();

(exp) pr(exp);

[exp] if (c in first (exp)) pr(exp);

exp∗ while (c in first (exp)) pr(exp);

exp+ pr(exp); while (c in first (exp)) pr(exp);

fact1 . . . factn pr(fact1); ... ; pr(factn);

term1| . . . |termn

switch (c) {
case c in f i r s t (term1) : pr (term1) ;
case . . . : . . . ;
case c in f i r s t (termn) : pr (termn) ;
de fau l t : e r ro r () ;

}

RE = Regular Expression, pr = program

This only works if the grammar is left-parsable.

14

Definition: left-parsable
A grammar is left-parsable if:

term1| . . . |termn The terms do not share any initial symbols.

fact1 . . . factn If facti contains the empty symbol then facti
and facti+1 do not share any common initial
symbols.

[exp], exp∗ The initial symbols of exp cannot contain a
symbol which belong to the first set of an ex-
pression following exp.

15

Left-parsable grammar examples

G : : = A | B
A : : = ’ a ’ ’ b ’ // f i r s t (A) = { ’ a ’ }
B : : = ’ c ’ // f i r s t (B) = { ’ c ’ }

input : ”ab”

G : : = [A] B
A : : = ’ a ’ | ’ b ’ // f i r s t (A) = { ’ a ’ , ’ b ’ }
B : : = ’ c ’ // f i r s t (B) = { ’ c ’ }

input : ”bc”

16

Non left-parsable grammar examples

G : : = A | B
A : : = ’ a ’ ’ b ’ // f i r s t (A) = { ’ a ’ }
B : : = ’ a ’ ’ c ’ // f i r s t (B) = { ’ a ’ }

input : ”ac”

G : : = [A] B
A : : = ’ a ’ | ’ b ’ // f i r s t (A) = { ’ a ’ , ’ b ’ }
B : : = ’ b ’ ’ c ’ // f i r s t (B) = { ’ b ’ }

input : ”bc”

G : : = A B
A : : = ’ a ’ | ’ b ’ | ε // f i r s t (A) = { ’ a ’ , ’ b ’ , ε }
B : : = ’ b ’ ’ c ’ // f i r s t (B) = { ’ b ’ }

input : ”bc”

17

Example: recognizing identifiers

Identifier syntax (example)
i d e n t i f i e r : : = l e t t e r (l e t t e r | d i g i t)*
d i g i t : : = ”0 ” | . . . | ” 9 ”
l e t t e r : : = ” a ” | . . . | ” z ” | ”A ” | . . . | ” Z ”

18

Java-ish Program
void ident () {
i f (c i s in [a−zA −Z])
l e t t e r () ;

else
er ror () ;

while (c i s in [a−zA −Z0 −9]) {
switch (c) {
case c i s in [a−zA −Z] : l e t t e r () ;
case c i s in [0 −9] : d i g i t () ;
defaul t : e r ro r () ;

} } }

void l e t t e r () {
i f (c i s in [a−zA −Z]) next () ;
else er ror () ;

}
void d i g i t () {

i f (c i s in [0 −9]) next () ;
else er ror () ;

}

19

More “realistic” Java version
void ident () {
i f ((c >= ’ a ’ && c <= ’ z ’) | |

(c >= ’ A ’ && c <= ’ Z ’))
next () ;

else
er ror () ;

while ((c >= ’ a ’ && c <= ’ z ’) | |
(c >= ’ A ’ && c <= ’ Z ’) | |
(c >= ’ 0 ’ && c <= ’ 9 ’))

next () ;

which corresponds to this different (equivalent) grammar:

Identifier syntax
i d e n t i f i e r : : = (” a ” | . . . | ” z ” | ”A ” | . . . | ” Z ”)

(” a ” | . . . | ” z ” | ”A ” | . . . | ” Z ” | ”0 ” | . . . | ” 9 ”)*

Two things have happened:

• Use ascii value of characters in real implementation
• The non-terminals have been inlined

20

More “realistic” Java version
void ident () {
i f ((c >= ’ a ’ && c <= ’ z ’) | |

(c >= ’ A ’ && c <= ’ Z ’))
next () ;

else
er ror () ;

while ((c >= ’ a ’ && c <= ’ z ’) | |
(c >= ’ A ’ && c <= ’ Z ’) | |
(c >= ’ 0 ’ && c <= ’ 9 ’))

next () ;

which corresponds to this different (equivalent) grammar:

Identifier syntax
i d e n t i f i e r : : = (” a ” | . . . | ” z ” | ”A ” | . . . | ” Z ”)

(” a ” | . . . | ” z ” | ”A ” | . . . | ” Z ” | ”0 ” | . . . | ” 9 ”)*

Two things have happened:

• Use ascii value of characters in real implementation
• The non-terminals have been inlined

20

More “realistic” Java version
void ident () {
i f ((c >= ’ a ’ && c <= ’ z ’) | |

(c >= ’ A ’ && c <= ’ Z ’))
next () ;

else
er ror () ;

while ((c >= ’ a ’ && c <= ’ z ’) | |
(c >= ’ A ’ && c <= ’ Z ’) | |
(c >= ’ 0 ’ && c <= ’ 9 ’))

next () ;

which corresponds to this different (equivalent) grammar:

Identifier syntax
i d e n t i f i e r : : = (” a ” | . . . | ” z ” | ”A ” | . . . | ” Z ”)

(” a ” | . . . | ” z ” | ”A ” | . . . | ” Z ” | ”0 ” | . . . | ” 9 ”)*

Two things have happened:

• Use ascii value of characters in real implementation
• The non-terminals have been inlined 20

Lexical Analysis

Lexical Analysis

Building a Lexer

Role of lexical analysiser

The main role of the lexical analyser (or lexer) is to read a bit of the
input and return a token.

Java Lexer class:

c lass Lexer {
publ ic Token nextToken () {
// return the next token , ignor ing white spaces

}
. . .

}

White spaces are usually ignored by the lexer. White spaces are:

• white characters (tabulation, newline, …)
• comments (any character following “//” or enclosed between
“/*” and “*/”

21

What is a token?

A token consists of a category and other additional information.

Example of token categories
IDENTIF IER → foo , main , cnt , . . .
NUMBER → 0 , −12 , 1000 , . . .
STRING_LITERAL → ” Hel lo world ! ” , ” a ” , . . .
EQ → ==
ASSIGN → =
PLUS → +
LPAR → (
. . . → . . .

Java Token class:
c lass Token {
Category category ; // Java enumeration
S t r i ng data ; // s tores number or s t r i ng
Pos i t ion pos ; // l i n e /column number in source

}

22

Example

Given the following C program:

i n t foo (i n t i) {
return i + 2 ;

}

the lexer will return:
INT IDENTIF IER (” foo ”) LPAR INT IDENTIF IER (” i ”) RPAR LBRA
RETURN IDENTIF IER (” i ”) PLUS NUMBER (” 2 ”) SEMICOLON

RBRA

23

A Lexer for Simple Arithmetic Expressions

Example: BNF syntax
i d e n t i f i e r : : = l e t t e r (l e t t e r | d i g i t)*
d i g i t : : = ”0 ” | . . . | ” 9 ”
l e t t e r : : = ” a ” | . . . | ” z ” | ”A ” | . . . | ” Z ”
number : : = d i g i t +
plus : : = ” + ”
minus : : = ” −”

24

Example: token definition
c lass Token {

enum Category {
IDENTIF IER
NUMBER ,
PLUS ,
MINUS ,
INVALID

}

// f i e l d s
Category category ;
S t r i ng data ;
Pos i t ion pos i t ion ;

// const ruc tors
Token (Category cat) { . . . }
Token (Category cat , S t r i ng data) { . . . }
. . .

}

25

Example: tokeniser implementation
c lass Tokeniser {

Scanner scanner ;

Token next () {
char c = scanner . next () ;

// skip white spaces
i f (Character . isWhitespace (c)) return next () ;

i f (c == ’ + ’) return new Token (Category . PLUS) ;
i f (c == ’ − ’) return new Token (Category . MINUS) ;

// i d e n t i f i e r
i f ((c >= ’ a ’ && c <= ’ z ’) | | (c >= ’ A ’ && c <= ’ Z ’)) {
S t r i ngBu i l de r sb = new S t r i ngBu i l de r () ;
sb . append (c) ;
c = scanner . peek () ;
while ((c >= ’ a ’ && c <= ’ z ’) | | (c >= ’ A ’ && c <= ’ Z ’) | |

(c >= ’ 0 ’ && c <= ’ 9 ’)) {
sb . append (c) ;
scanner . next () ;
c = scanner . peek () ;

}
return new Token (Category . IDENTIFIER , sb . t oS t r i ng ()) ;

} 26

Example: continued
// number
i f (c >= ’ 0 ’ && c <= ’ 9 ’) {
S t r i ngBu i l de r sb = new S t r i ngBu i l de r () ;
sb . append (c) ;
c = scanner . peek () ;
while (c >= ’ 0 ’ && c <= ’ 9 ’) {
sb . append (c) ;
scanner . next () ;
c = scanner . peek () ;

}
return new Token (Category . NUMBER , sb . t oS t r i ng ()) ;

}

// e lse
er ror () ;
return new Token (Category . INVALID) ;

}

}

27

Example: continued
// number
i f (c >= ’ 0 ’ && c <= ’ 9 ’) {
S t r i ngBu i l de r sb = new S t r i ngBu i l de r () ;
sb . append (c) ;
c = scanner . peek () ;
while (c >= ’ 0 ’ && c <= ’ 9 ’) {
sb . append (c) ;
scanner . next () ;
c = scanner . peek () ;

}
return new Token (Category . NUMBER , sb . t oS t r i ng ()) ;

}

// e lse
er ror () ;
return new Token (Category . INVALID) ;

}

}

27

Lexical Analysis

Ambiguous Grammar

Some grammars are ambiguous.

Example 1
comment : : = ”/* ” .* ”*/” | ”//” .* NEWLINE
div : : = ” / ”

Solution:

Longest matching rule
The lexer should recognized the longest lexeme that corresponds
to the definition.

Project hint: comments are actually considered a special case. Use
peek ahead function from the Scanner, and assume that /* and //
always indicate the start of a comment.

28

Some grammars are ambiguous.

Example 2
number : : = [” − ”] d i g i t +
d i g i t : : = ”0 ” | . . . | ” 9 ”
plus : : = ” + ”
minus : : = ” −”

Example input: -9
Is it number or minus number ?

Solution:

Delay to parsing stage
Remove the ambiguity and deal with it during parsing
number : : = d i g i t +
d i g i t : : = ”0 ” | . . . | ” 9 ”
plus : : = ” + ”
minus : : = ” −”

29

Some grammars are ambiguous.

Example 2
number : : = [” − ”] d i g i t +
d i g i t : : = ”0 ” | . . . | ” 9 ”
plus : : = ” + ”
minus : : = ” −”

Example input: -9
Is it number or minus number ?

Solution:

Delay to parsing stage
Remove the ambiguity and deal with it during parsing
number : : = d i g i t +
d i g i t : : = ”0 ” | . . . | ” 9 ”
plus : : = ” + ”
minus : : = ” −”

29

Next lecture

• Automatic Lexer Generation

30

	Languages and Syntax
	Context-free Language
	Regular Expression
	Regular Languages

	Lexical Analysis
	Building a Lexer
	Ambiguous Grammar

