
Compiler Design
Lecture 9: Semantic Analysis, part I: Name Analysis

Christophe Dubach
Winter 2025

Timestamp: 2025/02/06 17:20:00

1

Correctness Beyond Syntax

There is a level of correctness deeper than syntax (grammar).

Example: broken C program
foo (i n t a , b , c , d) { . . . }

i n t bar () {
i n t f [3] , g [0] , h , i , j , k ;
char * p ;
foo (h , i , ” ab ” , j , k) ;
k = f* i + j ;
h = g [1 7] ;
p r i n t f (”%s ,%s\n” , p , q) ;
p = 1 0 ;
4 = i ;

}

What is wrong with this program?
• declared g[0], used g [17]

• wrong number of arguments for foo
• ‘‘ ab ’’ is not an int

• used f as scalar but is array
• undeclared variable q
• 10 is not a character string
• cannot assign to an integer litteral
• no return statement for bar

2

Table of contents

Name Analysis

Scopes

Data Structures

Implementation

3

To generate code, a compiler needs to answer many questions:

about names

• is x a scalar, an array or a function?
• is x declared? Are there names declared but not used?
• which declaration of x does each use reference?

about types

• is the expression x*y+z type-consistent?
• in a[i , j , k], does a have three dimensions?
• how many arguments does foo take? What about printf?

about memory

• where can z be stored? (register, local, global heap, static)
• does *p reference the result of a malloc()?
• do p and q refer to the same memory location?

. . .

4

Name Analysis

Name Analysis

The property “each identifier needs to be declared before use”
depends on context information.

• In theory, possible to specify this with a context-sensitive
grammar

• In practice we use a Context-Free Grammar (CFG) for syntax and
identify semantically invalid programs using other mechanisms

In order to check such a property, we need to find the declaration of
each identifier. Additional constraints might exist depending on the
specific language.

5

Different languages, different constraints

Example
. . .

void main () {
i = 3 ;

}
i n t i ;

. . .

• invalid in C
• valid in Java

6

Name Analysis

Scopes

Scopes

Definition
The region where an identifier is visible is it’s scope.

This means it is only legal to refer to the identifier within its scope.
Here identifier refers to function or variable name.

In addition, in many languages, it is illegal to declare two identifiers
with the same name if the are in the same scope (ignoring nesting).

In our language we have two types of scopes:

• Global scope (e.g. file)
• Local scope (e.g. block of code)

Can you think of other scopes?

7

Global scope

Any name declared outside any block has global scope. It is visible
anywhere in the file after its declaration.

i has global scope
i n t i ;
void main () {
i = 2 ;

}

Global scope
GlobalScope ({ i })

8

Local scope

Any identifier declared within a block {...} of code is visible only
within that block. Function parameter identifiers have local scope, as
if they had been declared inside the block forming the body of the
Function.

i , j have the same local scope
void foo (i n t i) {
i n t j ;
i = 2 ;
j = 3 ;
}

Local scope
LocalScope ({ i , j })

9

Nested scopes

Scopes can be nested within each other.

C code example
i n t i ;
void main (i n t j) {
i n t k ;
{
i n t l ;

}
{
i n t l ;
i n t m;

}
}

Corresponding nested
scopes
GlobalScope (
{ i }
LocalScope (
{ j , k }
LocalScope (
{ l }

)
LocalScope (
{ l ,m}

)
)

)

10

Shadowing

ii
Shadowing occurs when an identifier declared within a given
scope has the same name as an identifier declared in an outer
scope. The outer identifier is said to be shadowed and any
use of the identifier will refer to the one from the inner scope.

Legal example in C
i n t i ;
i n t j ;
void main (i n t i) {
i n t j ;
i ;
{
i n t j ;
j ;

}
j ;

}

11

Illegal shadowing

In some languages (e.g. Java), it is illegal to shadow local variables.

Illegal example in Java
publ ic s t a t i c void foo () {
i n t i ;
. . .
for (i n t i = 0 ; i < 5 ; i ++) // i l l e g a l to redec lare i
System . out . p r i n t l n (i) ;

}

• Making this illegal helps prevent potential bugs.
• However, Java does allow for shadowing of fields by local
variables. Why?

• if this were not allowed, the introduction of a new field in a
superclass might create problems in the sub-classes

12

Illegal shadowing

In most languages, it is illegal to declare two identifiers with the
same name if the are in the same scope (ignoring nesting). Here,
identifier, refers to a function or a variable name.

Illegal example 1 in C
i n t i ;
i n t i ; // ac tua l l y l ega l in C ! !
void main (i n t j) {
i n t j ; // i l l e g a l
i n t k ;
i n t k ; // i l l e g a l

}

Illegal example 2 in C
i n t i ;
void i () { // i l l e g a l
}

13

Name Analysis

Data Structures

Name Analysis

To perform name analysis, we need to define a few data structures:

Symbol
A symbol is a data structure that stores all the necessary
information related to a declared identifier that the compiler must
know.

Symbol Table
A symbol table is a data structure that stores a mapping from
symbol name (String) to the symbol.

Scope
A scope is a data structure that stores information about declared
identifiers. Scopes are usually nested.

14

Symbols

Symbol classes
abstract c lass Symbol {
S t r i ng name ;

}
c lass FunSymbol extends Symbol {
FunDecl fd ;
FunSymbol (FunDecl fd) {
t h i s . fd = fd ;
t h i s . name = fd . name ;

}
}
c lass VarSymbol extends Symbol {
VarDecl vd ;
VarSymbol (VarDecl vd) {
t h i s . vd = vd ;
t h i s . name = vd . var . name ;

}
}

15

Scope and Symbol Tables

The symbols are stored in the symbol table within their scope.

Scope class
c lass Scope {
Optional <Scope> outer ; // empty i f top − l e v e l
Map< St r ing , Symbol> symbolTable = new HashMap () ;

Scope (Scope outer) { . . . } ;

Symbol lookup (S t r i ng name) { . . . } ;
Symbol lookupCurrent (S t r i ng name) { . . . } ;

void put (Symbol symbol) {
symbols . put (symbol . name , symbol) ;

}
}

16

Exercise

1. Why are there two lookup methods?
2. Implement the lookup methods.

17

Name Analysis

Implementation

Implementation

Let’s write a pass to analyse names using pattern-matching.

The pass should:

• ensure variables and functions are declared before used
• ensure variable and function declarations name are unique
within the same scope

• save the results of the analysis back in the AST nodes:
• a reference to the variable declaration for each variable use
• a reference to the function declaration for each function call
• this information is necessary for the later passes
(e.g. type checking, code generation)

18

Variable Declaration:
i n t i ;

NameAnalysis
c lass NameAnalysis {

Scope scope ;
NameAnalysis (Scopt scope) { t h i s . scope = scope ; } ;

void v i s i t (ASTnode node) {
switch (node) {

case VarDecl vd → {
Symbol s = scope . lookupCurrent (vd . var . name) ;

i f (s ! = nu l l)
e r ro r () ;

e lse
scope . put (new VarSymbol (vd)) ;

}
. . .

19

Variable Use:
i n t i ; // var iab le dec lara t ion
. . .
i + 3 ; // var iab le use

VarExpr class
c lass VarExpr {

. . .
VarDecl vd ;

}

NameAnalysis : variable use
. . .
case VarExpr ve → {
Symbol sym = scope . lookup (ve . name) ;
switch (sym) {
case VarSymbol vs → ve . vd = vs . vd ;
case nul l , de fau l t → er ror () ;

}
. . .

Not just analysis!
This does more than analysing the AST: it also remembers the
result of the analysis directly in the AST node.

This information is necessary to identify which variable/function is
used/called.

20

Code block:
. . .
{

. . .
}
. . .

NameAnalysis: block
. . .
case Block b → {
// save current scope and create new one
Scope oldScope = scope ;
scope = new Scope (oldScope) ;

// v i s i t the ch i ldren
. . .

// res tore previous scope
scope = oldScope ;
}

. . .

21

Next lecture

• Type analysis

22

	Name Analysis
	Scopes
	Data Structures
	Implementation

