Compiler Design

Lecture 3: Introduction to Lexical Analysis

Christophe Dubach
Winter 2025

Timestamp: 2025/01/09 17:16:00

Lexer

Source ST]char [I token(Paroar] AST (i] AST (IR IR
code : J L | l J L Analyser J LGenerator

| | Errors
The Lexer:

- Produces a stream of characters from the source code;
- Separates the stream into lexems — the basic unit of syntax
- Alexem is similar to a “word” in natural languages
- and assigns a syntactic category to each lexem (part of speech)
- For natural languages : noun, verb, adjective, ...
- For programming languages : number, keyword, idenfifier, +, (, ...
- to produce a sequence of tokens (pair of lexem + category)

For instance, x = x+y; is turned by the lexer into:
ID(x) EQ ID(x) PLUS ID(y) SC

Note that the lexer eliminates white spaces (including comments).

Table of contents

Languages and Syntax
Context-free Language
Regular Expression

Regular Languages

Lexical Analysis
Building a Lexer

Ambiguous Grammar

Languages and Syntax

Languages and Syntax

Context-free Language

Context-free Language

Context-free syntax is specified with a context-free grammar.

For instance:

SheepNoise — SheepNoise baa
| baa

This grammar defines the set of noises that a sheep makes
(under normal circumstances).

It is written in a variant of Backus—Naur Form (BNF).

G =(S,N,T,P) is a grammar where

- Sis the start symbol

- N is a set of non-terminal symbols

- Tis a set of terminal symbols or words

- Pis aset of productions or rewrite rules (P:N — NUT)

A context-free grammar, abbreviated CFG, is a grammar where the
left hand-side of each production rule only contains a single
non-terminal symbol.

Example of context-free grammar

1 | goal — expr
2 | ex t
pr — expr op term 5 - goal

3 | term :
T = {number,id,+, -}

4 |term — number

E | id N = {goal,expr,term,op}
P =11,2,3,4,5,6,7

o lop o - (1,2,3,4,5,6,7)

7 | =

This grammar defines simple expressions with addition &
subtraction over “number” and “id".
Only non-terminal symbols appear on the left hand-side of the rules.

It means we can always produce an expression by subtituting the left
hand-side with any of the choices on the righ hand-side. For
instance:

goal — expr — expr op term — term op term — number + id

Example of non-context-free grammar:

A — B

B — b B
| C

b C— ¢

Let's try to derive some expressions with this grammar:
cA—>B—>bB—=bbB—-bbC—bc
cA—-B—>C—77

The application of the last rule depends on context.

This means we need to keep track of what has happened in the past
(and we can get stuck) = harder!

Empty symbol ¢

A grammar can also contain a special empty symbol

For instance:

1 |goal — A | e
A — Aa
| a

Recognizes the following set of inputs: {e, a,aa, aaa,...} where e
represents an empty input.

Languages and Syntax

Regular Expression

Regular Expression

Grammars can often be simplified and shortened using an
augmented BNF notation where:

- x* is the Kleene closure : zero or more occurrences of x
- X+ is the positive closure : one or more occurrences of x

- [x] is an option: zero or one occurrence of x

Example: identifier syntax

identifier ::= letter (letter | digit)*

digit = 0" | Y

letter - L I I Y N I A

Languages and Syntax

Regular Languages

Regular Language

Definition
A language is regular if it can be expressed with a single regular
expression or with multiple non-recursive regular expressions.

Regular languages can be used to specify the lexem to be translated
to tokens by the lexer.

Biggest advantage: a regular language can be recognised with a finite
state machine.

Using results from automata theory and theory of algorithms, we can
automatically build recognisers from regular expressions (topic of
next lecture).

1

Regular language to program

Given the following:

- cis a lookahead character;
- next() consumes the next character;
- error() quits with an error message; and

- first (exp) Is the set of initial characters of exp.

Then we can build a program to recognise a regular language.

RE pr(RE)

“x! if (c =='x") next() else error();
(exp) pr(exp);

[exp] if (cin first (exp)) pr(exp);

expx while (c in first (exp)) pr(exp);

exp+ pr(exp); while (c in first (exp)) pr(exp);

fact, ... fact,

pr(factl);, .. ; pr(factn);

terms| ... |term,

switch (c) {

case ¢ in first(term1) : pr(terml);

CASE

case c in first(termn) : pr(termn);

default : error();

}

RE = Regular Expression, pr = program

This only works if the grammar is left-parsable.

Definition: left-parsable
A grammar is left-parsable if:

terms| ... |[term,

fact, ... fact,

[exp], expx

The terms do not share any initial symbols.

If fact; contains the empty symbol then fact;
and factj,, do not share any common initial
symbols.

The initial symbols of exp cannot contain a
symbol which belong to the first set of an ex-
pression following exp.

14

Left-parsable grammar examples

G = Al B

A = 'a’" 'b" /] first(A) = {'a’}

B = ¢’ [l first(B) = {'c’}
input : "ab”

G = [A] B

A = 'a’ | 'b" /] first(A) = {'a’,'b"}
B = ¢’ [l first(B) = {'c’}

input : "bc”

Non left-parsable grammar examples

G ::= A| B

A = a’ ‘b’ /] first(A) = {'a’}

B ::= 'a’ 'c’ [/ first(B) = {'a'}
input : "ac”

G = [A] B

A = a’ | b’ /] first(A) = {"a’,'b’}
B ::= 'b’ 'c’ /] first(B) = {'b’}

input: "bc”

G ::= AB
A = 'a’ | b L e /] first(A) = {"a’, ‘b, €}
B ::= 'b’" 'c’ /] first(B) = {'b"}

input: "bc”

Example: recognizing identifiers

Identifier syntax (example)

identifier ::= letter (letter | digit)*
digit = 0" o |9
letter = at o L rzn At Tz

Java-ish Program

void ident() {
if (c is in [a-zA-Z])
letter ();
else
error ();
while (c is in [a-zA-Z0-9]) {
switch (c) {

case ¢ is in [a-zA-Z] : letter ();

case c is in [0-9] : digit();
default : error();

b1l

void letter () {
if (c is in [a-zA-Z]) next();
else error();

}

void digit() {
if (c is in [0-9]) next();
else error();

}

More “realistic” Java version

void ident() {
if (Character.islLetter(c))
next ();
else
error ();
while (Character.isLetterOrDigit(c))
next ();

19

Lexical Analysis

Lexical Analysis

Building a Lexer

Role of lexical analysiser

The main role of the lexical analyser (or lexer) is to read a bit of the
input and return a token.

Java Lexer class:

class Lexer {
public Token nextToken() f{
// return the next token, ignoring white spaces

}

White spaces are usually ignored by the lexer. White spaces are:

- white characters (tabulation, newline, ...)

- comments (any character following “//” or enclosed between
M/*n and u*/n

20

What is a token?

A token consists of a category and other additional information.

Example of token categories

IDENTIFIER
NUMBER
STRING_LITERAL
EQ

ASSIGN

PLUS

LPAR

O

Java Token class:

foo, main, cnt,

0, -12, 1000,
"Hello world!”, "a”,
"

(

class Token {
Category category;
String data;
Position pos;

}

// Java enumeration
// stores number or string
// line/column number in source

21

Given the following C program:

int foo(int i) {
return i+2;

the lexer will return:

INT IDENTIFIER("foo”) LPAR INT IDENTIFIER("i"”) RPAR LBRA
RETURN IDENTIFIER(”i") PLUS NUMBER("2") SEMICOLON
RBRA

22

A Lexer for Simple Arithmetic Expressions

Example: BNF syntax

identifier ::= letter (letter | digit)*

digit = "0" | s |9

letter - L I 2 Y N I A
number = digit+

plus o= Tt

minus o=

23

Example: token definition

class Token {

enum Category {
IDENTIFIER
NUMBER,
PLUS,
MINUS,
INVALID

}

// fields
Category category;
String data;
Position position;

// constructors
Token(Category cat) {...}
Token(Category cat, String data)

{..

N

24

Example: tokeniser implementation

class
Scan

Toke
ch

/!l
if
if
if
//
if

Tokeniser {
ner scanner;

n next() {
ar ¢ = scanner.next();

skip white spaces

(Character.isWhitespace(c)) return next();

(

c
(c

identifier
(Character.islLetter(c)) {
StringBuilder sb = new StringBuilder ();
sb.append(c);
c = scanner.peek();
while (Character.isLetterOrDigit(c)) {
sb.append(c);
scanner.next();
c = scanner.peek();

}

return new Token(Category.IDENTIFIER, sb

= '+') return new Token(Category.PLUS);
= '-') return new Token(Category.MINUS);

.toString ());

25

Example: continued

// number
if (Character.isDigit(c)) {
StringBuilder sb = new StringBuilder ();
sb.append(c);
¢ = scanner.peek();
while (Character.isDigit(c)) {
sb.append(c);
scanner.next();
¢ = scanner.peek();
}
return new Token(Category.NUMBER, sb.toString());

Example: continued

// number
if (Character.isDigit(c)) {

}

StringBuilder sb = new StringBuilder ();
sb.append(c);
¢ = scanner.peek();
while (Character.isDigit(c)) {
sb.append(c);
scanner.next();
¢ = scanner.peek();
}
return new Token(Category.NUMBER, sb.toString());

// else
error ();
return new Token(Category.INVALID);

26

Lexical Analysis

Ambiguous Grammar

Some grammars are ambiguous.

Example 1

comment ::= "/*" x "x/" | "//" . NEWLINE
div m

Solution:

Longest matching rule

The lexer should recognized the longest lexeme that corresponds
to the definition.

Project hint: comments are actually considered a special case. Use
peek ahead function from the Scanner, and assume that /* and //
always indicate the start of a comment.

27

Some grammars are ambiguous.

Example 2

number ["-"] digit+
digit c= 0" | L]
plus S

minus o=

Example input: -9
Isit number or minus number ?

28

Some grammars are ambiguous.

Example 2

number digit+
digit = 0" | L]9
plus o= T

minus 25 B8 Y=

Example input: -9
Isit number or minus number ?

Solution:
Delay to parsing stage
Remove the ambiguity and deal with it during parsing

number = digit+
digit B L R B
plus o= "

minus o= "

Next lecture

- Automatic Lexer Generation

29

	Languages and Syntax
	Context-free Language
	Regular Expression
	Regular Languages

	Lexical Analysis
	Building a Lexer
	Ambiguous Grammar

