Compiler Design

An Introduction to Equality Saturation and Its Applications

March 28, 2025

Abd-El-Aziz Zayed

Table Of Contents

Compiler Optimization

Pass Sequences

Phase Ordering Problem

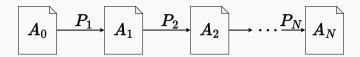
Equality Saturation

Equivalence Graphs

Case Studies

Pass Sequences

An optimizer performs a sequence of passes (a.k.a. transformations, rewrites) on the program to find the optimal version.



Optimization Passes

- Constant folding
- Dead code elimination
- Common subexpression elimination

- Loop unrolling
- Loop fusion
- Loop tilling
- Loop vectorization

The order in which passes are applied affects the final program and its performance.

The order in which passes are applied affects the final program and its performance.

- P_1 . $xy/z \rightarrow x(y/z)$
- P_2 . $\underline{x \cdot 2 \rightarrow x \ll 1}$
- P_3 . $\underline{xy \rightarrow yx}$

- P_5 . $\underline{x/x \rightarrow 1}$
- P_6 . $\underline{x \cdot 1 \rightarrow x}$

The order in which passes are applied affects the final program and its performance.

- P_1 . $\underline{xy/z \to x(y/z)}$
- P_2 . $\underline{x \cdot 2 \rightarrow x \ll 1}$
- P_3 . $\underline{xy \rightarrow yx}$

- P_5 . $\underline{x/x \rightarrow 1}$
- $\bullet \ P_6. \ \underline{x \cdot 1 \to x}$

- $(a \cdot 2)/2 \xrightarrow{P_2} (a \ll 1)/2$
- $(a \cdot 2)/2 \xrightarrow{P_1} a \cdot (2/2) \xrightarrow{P_5} a \cdot 1 \xrightarrow{P_6} a$

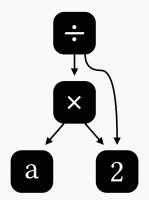
- $(a \cdot 2)/2 \xrightarrow{P_2} (a \ll 1)/2$
- $(a \cdot 2)/2 \xrightarrow{P_1} a \cdot (2/2) \xrightarrow{P_5} a \cdot 1 \xrightarrow{P_6} a$

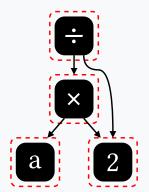
Problems:

- 1. The compiler gets stuck in a local optimum if it applies P_2 before P_1 .
- 2. The passes are destructive: we lose the original and intermediate versions of the program.

Equivalence Graphs

We build an **e**-graph to store all defined equivalent versions of the program.



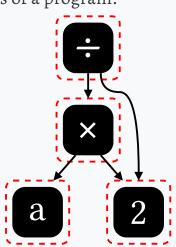


$$(a \cdot 2)/2$$

Equivalence Graphs

Store many equivalent versions of a program.

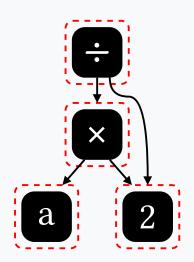
- 1. **e-node**: Operation node.
- 2. **e-class**: Set of equivalent e-nodes.
- 3. **e-graph**: Set of e-classes.



Equality Saturation

Process:

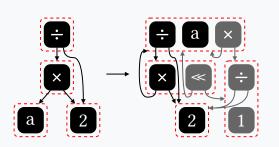
- 1. Build an **e**-graph of $(a \cdot 2)/2$.
- 2. Apply the rewrite rules to the e-graph until a fixed-point.
- 3. Extract the optimized expression via a cost model.



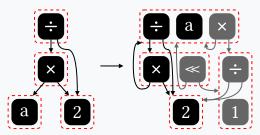
Equality Saturation

- P_1 . $xy/z \rightarrow x(y/z)$
- P_2 . $\underline{x \cdot 2} \rightarrow x \ll 1$
- P_3 . $xy \rightarrow yx$

- P_5 . $\underline{x/x \rightarrow 1}$
- P_6 . $\underline{x \cdot 1 \rightarrow x}$



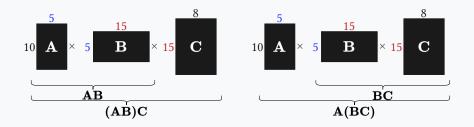
Equality Saturation



Problems are solved:

- 1. The global optimum is found by extracting the optimal expression via a cost model.
- 2. The original and intermediate versions of the program are preserved.

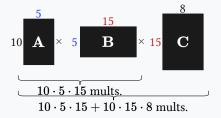
MatMul Associativity

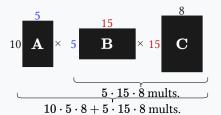


$$(AB) C = A (BC)$$

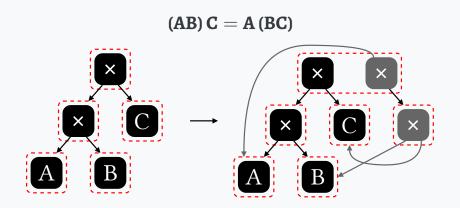
How do we find out which one is more efficient?

The Order of Operations Matters





MatMul Associativity



Polynomial Evaluation: Horner's Method

Reduce from $O(n^2)$ to O(n) multiplications.

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n$$

= $a_0 + x(a_1 + x(a_2 + \dots + x(a_{n-1} + xa_n)))$

Polynomial Evaluation: Horner's Method

Reduce from $O(n^2)$ to O(n) multiplications.

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n$$

= $a_0 + x(a_1 + x(a_2 + \dots + x(a_{n-1} + xa_n)))$

• Exponentiation: $\underline{x}^{\circ} \Rightarrow \underline{1}$ and $\underline{x}^{n} \Rightarrow \underline{x} \cdot \underline{x}^{n-1}$

Polynomial Evaluation: Horner's Method

Reduce from $O(n^2)$ to O(n) multiplications.

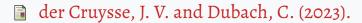
$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1} + a_n x^n$$

= $a_0 + x(a_1 + x(a_2 + \dots + x(a_{n-1} + xa_n)))$

- Exponentiation: $\underline{x}^{\circ} \Rightarrow \underline{1}$ and $\underline{x}^{n} \Rightarrow \underline{x} \cdot \underline{x}^{n-1}$
- Commutativity: $x + y \Leftrightarrow y + x$ and $x \cdot y \Leftrightarrow y \cdot x$
- Associativity: $(x + y) + z \Leftrightarrow x + (y + z)$ and $(x \cdot y) \cdot z \Leftrightarrow x \cdot (y \cdot z)$
- Distributivity: $x \cdot (y + z) \Leftrightarrow x \cdot y + x \cdot z$
- Identity: $x \cdot 1 \Rightarrow x$

References

- Equality Saturation: a New Approach to Optimization. [Tate et al., 2009]
- DialEgg: Dialect-Agnostic MLIR Optimizer using Equality Saturation with Egglog.
 [Zayed and Dubach, 2025]
- Latent Idiom Recognition for a Minimalist Functional Array Language using Equality Saturation. [der Cruysse and Dubach, 2023]



Latent idiom recognition for a minimalist functional array language using equality saturation.

Tate, R., Stepp, M., Tatlock, Z., and Lerner, S. (2009).

Equality saturation: a new approach to optimization.

In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL'09, page 264–276, New York, NY, USA. Association for Computing Machinery.

Tayed, A.-E.-A. and Dubach, C. (2025).

Dialegg: Dialect-agnostic mlir optimizer using equality saturation with egglog.

In Proceedings of the 23rd ACM/IEEE International Symposium on Code Generation and Optimization, CGO '25, page 271–283, New York, NY, USA. Association for Computing Machinery.