
Compiler Design
Lecture 17: Register allocation

Christophe Dubach
Winter 2023

Timestamp: 2023/03/07 18:34:00

1

Graph Colouring Register
Allocation (EaC§13)

Main idea

1. Build an interference graph (a.k.a. “conflict” graph)
• Nodes = variables (virtual registers)
• Edges = overlapping live ranges

2. Find a k-colouring of the graph
• Colours = architectural registers

2

Interference graph

What is an interference graph? (also called conflict graph)

• Two values interfer if there exists a point in the program where
both are simultaneously live

• If x and u interfer, they cannot occupy the same register

To compute interferences, we must know where values are live

• ⇒ result of liveness analysis

Interference graph G

• Nodes in G represents variables (or virtual registers)
• Edges in G represents interference between two variables (or
virtual registers)

3

k-colouring of conflict graph

k-colourable graph
A graph G is k-colourable iff the nodes can be labelled (or colored)
such that no edge in G connects two nodes with the same label (or
color).

Examples:

2-colourable 3-colourable

If we can find a k-colouring of the interference graph, then all the
nodes (variables) with the same colour can share the same
architectural register, assuming at least k registers available.

4

Back to the main idea

1. Build an interference graph

2. Find a k-colouring of the graph

5

1. Building interference graph

Pseudo-
assembly:

a = 0
L1 : b = a + 1

c = c + b
a = b*2
i f (a <9) goto L1
return c

Control flow
graph:

entry

1: a = 0

2: b = a + 1

3: c = c + b

4: a = b * 2

5: a < 9

True

6: return c

False

Liveness:
node out in

6 c
5 ac ac
4 ac bc
3 bc bc
2 bc ac
1 ac c

Interference graph:
c

a b

6

2. Graph colouring and register mapping

Graph colouring:

c

a b

→
c

a b

→
c

a b

→
c

a b

Virtual to architectural registers

Possible mapping:
• a → $t0
• b → $t0
• c → $t1

(pseudo-)assembly final code:
$t0 = 0

L1 : $t0 = $t0 + 1
$ t 1 = $ t 1 + $t0
$t0 = $t0*2
i f ($t0 <9) goto L1
return $t 1

Job done! Or is it?

7

Challenges

• Graph colouring is NP-complete
• Complexity is exponential
• We don’t like such algorithms in our compilers!

• It might not be possible to colour a graph with k colours.
• Need alternative strategy in these cases

8

Heuristic for Graph Colouring

Observations

Suppose we have k architectural registers (or k colours):

• Any vertex n that has fewer than k neighbours in the
interference graph (degree(n) < k) can always be coloured!

• In such case, pick any colour not used by its neighbours — there
must be one!

9

Sketch of an algorithm

• Pick any vertex n such that degree(n) < k and put it on a stack
• Remove that vertex n and all connected edges from the graph

• This may make some new nodes have fewer than k neighbours

• In the end, if some vertex n still has k or more neighbours, then
spill the variable associated with n to memory

• Otherwise successively pop vertices off the stack and colour
them in the lowest colour not used by some neighbour

10

Chaitin’s Algorithm (1982!)

1. While ∃ vertices with < k neighbours in G
• Pick any vertex n such that degree(n) < k and put it on a stack
• Remove that vertex and all connected edges from G
• This will lower the degree of n’s neighbours

2. If G is non-empty (all vertices have k or more neighbours) then:
• Pick a vertex n (using some heuristic) and spill the variable
associated with n

• Remove vertex n from G, along with all connected edges
• If this causes some vertex in G to have fewer than k neighbours,
then go to step 1; otherwise, repeat step 2

3. Successively pop vertices off the stack and colour them in a
colour not used by the neighbours

11

Example with 3 registers

12

Example with 3 registers

13

Example with 3 registers

14

Example with 3 registers

15

Example with 3 registers

16

Example with 3 registers

17

Example with 3 registers

18

Example with 3 registers

19

Example with 3 registers

20

Example with 3 registers

21

Register Spilling

Need for register spilling

If it is not possible to find a k-colouring of the graph, we need to spill
some variables in memory.

The idea is to map some variable to memory rather to register

• this is what our naive register allocator is doing (for all
variables!)

(Other approaches are also possible (e.g. splitting live ranges) but
this is the subject of a compiler optimization course.)

22

Choice of variable to spill

Choosing which variable to spill is critical for performance:

• extra load instructions for every use of the variable
• extra store instructions for every def of the variable.

The compiler should use a cost-benefit analysis to decide which
variable to spill depending on:

• how often the variable is used/defined?
• how many other variables interfer with the variable?
• is the variable used in a loop?

For your project, simply pick the variable with highest connectivity as
it is likely to increase the chances that the graph becomes
k-colourable.

23

Spilling a variable requires a register

Original code (virtual registers):

...
add v0, v1, v2
...

After register alloc. (v1 spilled):

...
lw $t0, -20($fp)
add $t3, $t0,$t2
...

We have a bit of a & situation: spilling v1 uses a register!

However, the live range of the register used for spilling is very short!

⇒ it is not so bad.

source: ShadowThrust at Deviant Art, CC BY-SA 3.0

24

Two possible solutions:

• Naive approach: reserve a set of registers just for spilling
purpose (e.g. {$t0}) and never use them for anything else

• maximum number of such registers needed = maximum number of
registers an instruction can use/def (three for MIPS)

• Better approach: every time a variable needs to be spilled, stop
the register allocation process, and replace all the occurences of
the spilled variable with a load/store instruction that uses a
virtual register. Then re-run everything:

• liveness analysis
• inteference graph construction
• register allocation

Worst case scenario: O(n2)

25

Linear Scan

Linear Scan

Uses notion of live interval.

Live range (recap):

• the set of all program instructions where the variable is live.

Live interval:

• assumes program represented as a list of instructions
• smallest interval (from/to) of all program instructions that
contains all the variable’s live ranges

• this is an approximation of live range information which can be
computed much faster.

26

Live intervals vs ranges

Control flow
graph:

entry

1: a = 0

2: b = a + 1

3: c = c + b

4: a = b * 2

5: a < 9

True

6: return c

False

Live ranges:
a = {1→ 2; 4→ 5; 5→ 2}

b = {2→ 3; 3→ 4}
c = {1→ 2; 2→ 3; 3→ 4; 4→ 5; 5→ 6; 5→ 2}

1 : a = 0
2 : b = a + 1
3 : c = c + b
4 : a = b*2
5 : i f (a <9) goto 2
6 : return c

a b
c

Live intervals:
a = [1; 5]
b = [2; 4]
c = [2; 6]

Approximates live ranges. 27

Computing live ranges:

• THUMBS-DOWN liveness analysis is time-consumming (fixed point algorithm)
• THUMBS-UP precise information

Computing live intervals:

• THUMBS-UP linear complexity
• THUMBS-DOWN approximates live ranges

28

Allocation with Linear Scan and Live Intervals

Let’s do register allocation with linear scan and live intervals.

Assuming three architectural registers:

• free registers: {$t0 $t1 $t2 }
• assigned registers: a=$t0 b=$t1 c=$t2

a = 0
L1 : b = a + 1

c = c + b
a = b*2
i f (a <9) goto L1
return c

a b
c

$t0 = 0
L1 : $ t 1 = $t0 + 1

$t2 = $t2 + $ t 1
$t0 = $ t 1 *2
i f ($t0 <9) goto L1
return $t2

We are using three registers! Fine in this case, but can lead to spilling
if there is a lot of register pressure.

29

Summary

Graph coloring:

• computes live ranges with liveness-flow analysis
• use graph colouring to assign registers
• produces efficient code but at the cost of compilation time

Linear Scan:

• uses live intervals
• assigns registers with a simple linear traversal of the code
• fast compile-time (used in JIT compiler!) but might produce less
efficient code
(previous example needs 3 registers vs. 2 with graph colouring)

30

Next lecture

• Instruction selection

31

	Graph Colouring Register Allocation (EaC§13)
	Heuristic for Graph Colouring
	Register Spilling
	Linear Scan

