Compiler Design

Lecture 4: Automatic Lexer Generation (EaC§2.4)

Christophe Dubach Winter 2024

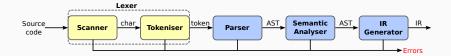
Timestamp: 2024/01/16 14:27:00

Finite State Automata for Regular Expression Finite State Automata Non-determinism

From Regular Expression to Generated Lexer Regular Expression to NFA From NFA to DFA

Final Remarks

Automatic Lexer Generation



Starting from a collection of regular expressions (RE) we can automatically generate a Lexer.

Idea: use a Finite State Automata (FSA) for the construction.

Finite State Automata for Regular Expression

Finite State Automata for Regular Expression

Finite State Automata

Definition: Finite State Automata

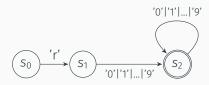
A finite state automata is defined by:

- S, a finite set of states
- $\cdot \, \Sigma$, an alphabet, or character set used by the recogniser
- $\delta(s, c)$, a transition function (takes a state and a character as input, and returns new state)
- \cdot s₀, the initial or start state
- *S_F*, a set of final states (a stream of characters is accepted iif the automata ends up in a final state)

Example: register names

```
register ::= 'r' ('0'|'1'|...|'9') ('0'|'1'|...|'9')*
```

The RE (Regular Expression) corresponds to a recogniser (or finite state automata):



Finite State Automata (FSA) operation:

- $\cdot\,$ Start in state s_0 and take transitions on each input character
- The FSA accepts a word \boldsymbol{x} iff \boldsymbol{x} leaves it in a final state (s_2)

Examples:

- **r17** takes it through s_0, s_1, s_2 and accepts
- **r** takes it through s_0, s_1 and fails
- \boldsymbol{a} starts in \boldsymbol{s}_0 and leads straight to failure

To be useful a recogniser must be turned into code

Table encoding RE

δ	'r'	'0' '1' '9'	others
S ₀	S ₁	error	error
S ₁	error	S ₂	error
S ₂	error	S ₂	error

Skeleton recogniser

```
c = next character

state = s_0

while(c \neq EOF)

state = \delta(state, c)

c = next character

if (state final)

return success

else

return error
```

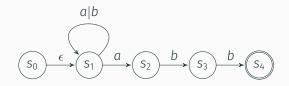
Finite State Automata for Regular Expression

Non-determinism

Deterministic Finite Automaton

Each RE corresponds to a Deterministic Finite Automaton (DFA). However, it might be hard to construct directly.

What about an RE such as (a|b)*abb?



This is a little different:

- s_0 has a transition on ϵ , which can be followed without consuming an input character
- s_1 has two transitions on a
- This is a Non-determinisitic Finite Automaton (NFA)

Non-deterministic vs deterministic finite automata

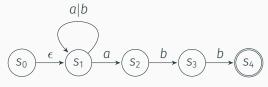
Deterministic finite state automata (DFA):

- All edges leaving the same node have distinct labels
- There is no ϵ transition

Non-deterministic finite state automata (NFA):

- Can have multiple edges with same label leaving the same node
- Can have ϵ transition
- This means we might have to backtrack

Backtracking example for a NFA: input = aabb



From Regular Expression to Generated Lexer It is possible to systematically generate a lexer for any regular expression.

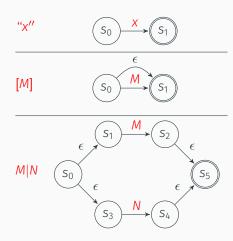
This can be done in three steps:

- 1. regular expression (RE) \rightarrow non-deterministic finite automata (NFA)
- 2. NFA \rightarrow deterministic finite automata (DFA)
- 3. DFA \rightarrow generated lexer

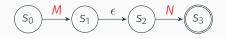
From Regular Expression to Generated Lexer

Regular Expression to NFA

1st step: RE ightarrow NFA (Ken Thompson, CACM, 1968)



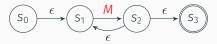
ΜN



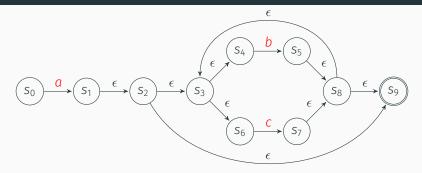
М*



 M^+



Example: $a(b|c)^*$



A human would do:
$$s_0 \xrightarrow{a} s_1$$

(automatic minimization possible)

From Regular Expression to Generated Lexer

From NFA to DFA

Executing a non-deterministic finite automata requires backtracking, which is inefficient. To overcome this, we want to construct a DFA from the NFA.

The main idea:

- We build a DFA which has one state for each set of states the NFA could end up in.
- A set of state is final in the DFA if it contains the final state from the NFA.
- Since the number of states in the NFA is finite (*n*), the number of possible sets of states (*i.e.* powerset) is also finite:
 - maximum 2^n (hint: set encoded as binary vectors)

Assuming the state of the NFA are labelled s_i and the states of the DFA we are building are labelled q_i .

We have two key functions:

- reachable(s_i, α) returns the set of states reachable from s_i by consuming character α
- ϵ -closure(s_i) returns the set of states reachable from s_i by ϵ (*e.g.* without consuming a character)

The Subset Construction algorithm (Fixed point iteration)

```
\begin{array}{l} q_0 = \epsilon \text{-}closure(s_0); \ Q = \{q_0\}; \ \text{add} \ q_0 \ \text{to WorkList} \\ \text{while (WorkList not empty)} \\ \text{remove } q \ \text{from WorkList} \\ \text{for each } \alpha \in \mathbf{\Sigma} \\ \text{subset} = \epsilon \text{-}closure(reachable(q, \alpha)) \\ \delta(q, \alpha) = \text{subset} \\ \text{if (subset } \notin Q) \ \text{then} \\ \text{add subset to } Q \ \text{and to WorkList} \end{array}
```

The algorithm (in English)

- Start from start state s_0 of the NFA, compute its ϵ -closure
- Build subset from all states reachable from q_0 for character α
- + Add this subset to the transition table/function δ
- If the subset has not been seen before, add it to the worklist
- Iterate until no new subset are created

Informal proof of termination

- Q contains no duplicates (test before adding)
- \cdot similarly we will never add twice the same subset to the worklist
- bounded number of states; maximum 2^{*n*} subsets, where *n* is number of state in NFA

 \Rightarrow the loop halts

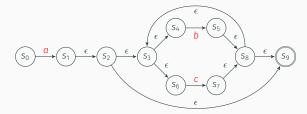
End result

- S contains all the reachable NFA states
- It tries each symbol in each s_i
- It builds every possible NFA configuration

\Rightarrow Q and δ form the DFA

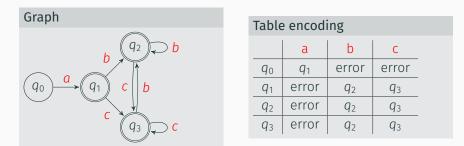
 $\rm NFA \rightarrow \rm DFA$

 $a(b|c)^*$



		ϵ -closure(reachable(q, α))			
	NFA states	a	b	С	
q_0	S ₀	<i>q</i> ₁	none	none	
<i>q</i> ₁	$S_1, S_2, S_3,$	none	<i>q</i> ₂	<i>Q</i> ₃	
	S_4, S_6, S_9				
q_2	$S_5, S_8, S_9,$	none	<i>q</i> ₂	<i>Q</i> ₃	
	S_3, S_4, S_6				
q_3	$S_7, S_8, S_9, S_3, S_4, S_6$	none	<i>q</i> ₂	<i>Q</i> ₃	
	S_3, S_4, S_6				

Resulting DFA for $a(b|c)^*$



- $\cdot\,$ Smaller than the NFA
- · All transitions are deterministic (no need to backtrack!)
- Could be even smaller (see EaC§2.4.4 Hopcroft's Algorithm for minimal DFA)
- \cdot Can generate the lexer using skeleton recogniser seen earlier

Final Remarks

Language design choice can complicate lexing:

- PL/I does not have reserved words (keywords): if (cond) then then = else; else else = then where are the variables?
- In Fortran & Algol68 blanks (whitespaces) are insignificant: do 10 i = 1,25 \cong do 10 i = 1,25 (loop, 10 is statement label) do 10 i = 1.25 \cong do10i = 1.25 (assignment)
- In C,C++,Java string constants can have special characters: newline, tab, quote, comment delimiters, ...

Good language design makes lexing simpler:

e.g. identifier cannot start with a digit in most modern languages
 ⇒ when we see a digit, it can only be the start of a number!

What does a C lexer sees?

u24; // identifier u24 24; // signed number 24 24u; // unsigned number 24 The important point:

- All this technology lets us automate lexer construction
- Implementer writes down regular expressions
- $\cdot\,$ Lexer generator builds NFA, DFA and then writes out code
- This reliable process produces fast and robust lexers

For most modern language features, this works:

- As a language designer you should think twice before introducing a feature that defeats a DFA-based lexer
- The ones we have seen (*e.g.* insignificant blanks, non-reserved keywords) have not proven particularly useful or long lasting

```
Example: ANSI-C grammar for tokens
https://www.cs.mcgill.ca/~cs520/2022/resources/
ANSI-C-grammar-l.html
```

For instance:

("["|" <:") { count(); return('['); }

Parsing:

- Context-Free Grammars
- Dealing with ambiguity
- Recursive descent parser