Compiler Design

Lecture 3: Introduction to Lexical Analysis

Christophe Dubach
Winter 2024

Timestamp: 2024/01/09 15:25:00

Fill up online form with your name and userid
(link available on course webpage)

Lexer

Source ST]char [I token(Paroar] AST (i] AST (IR IR
code : J L | l J L Analyser J LGenerator

| | Errors
The Lexer:

- Produces a stream of characters from the source code;
- Separates the stream into lexems — the basic unit of syntax
- Alexem is similar to a “word” in natural languages
- and assigns a syntactic category to each lexem (part of speech)
- For natural languages : noun, verb, adjective, ...
- For programming languages : number, keyword, idenfifier, +, (, ...
- to produce a sequence of tokens (pair of lexem + category)

For instance, x = x+y; is turned by the lexer into:
ID(x) EQ ID(x) PLUS ID(y) SC

Note that the lexer eliminates white spaces (including comments).

Table of contents

Languages and Syntax
Context-free Language
Regular Expression

Regular Languages

Lexical Analysis
Building a Lexer

Ambiguous Grammar

Languages and Syntax

Languages and Syntax

Context-free Language

Context-free Language

Context-free syntax is specified with a context-free grammar.

For instance:

SheepNoise — SheepNoise baa
| baa

This grammar defines the set of noises that a sheep makes
(under normal circumstances).

It is written in a variant of Backus—Naur Form (BNF).

G =(S,N,T,P) is a grammar where

- Sis the start symbol

- N is a set of non-terminal symbols

- Tis a set of terminal symbols or words

- Pis aset of productions or rewrite rules (P:N — N UT)

A context-free grammar, abbreviated CFG, is a grammar where the
left hand-side of each production rule only contains a single
non-terminal symbol.

Example of context-free grammar

1 | goal — expr
2 | ex t
pr — expr op term 5 - goal

3 | term :
T = {number,id,+, -}

4 |term — number

E | id N = {goal,expr,term,op}
P =11,2,3,4,5,6,7

o lop o - (1,2,3,4,5,6,7)

7 | =

This grammar defines simple expressions with addition &
subtraction over “number” and “id".
Only non-terminal symbols appear on the left hand-side of the rules.

It means we can always produce an expression by subtituting the left
hand-side with any of the choices on the righ hand-side. For
instance:

goal — expr — expr op term — term op term — number + id

Example of non-context-free grammar:

A — B
B — b B

| C
bC— c

Let's try to derive some expressions with this grammar:
-A—~B—-bB—-bbB—-bbC—bc
cA—>B—>C— 77

The application of the last rule depends on context.

This means we need to keep track of what has happened in the past
(and we can get stuck) = harder!

Empty symbol ¢

A grammar can also contain a special empty symbol

For instance:

1 |goal — A | e
A — Aa
| a

Recognizes the following set of inputs: {e, a,aa, aaa,...} where e
represents an empty input.

Languages and Syntax

Regular Expression

Regular Expression

Grammars can often be simplified and shortened using an
augmented BNF notation where:

- x* is the Kleene closure : zero or more occurrences of x
- X+ is the positive closure : one or more occurrences of x

- [x] is an option: zero or one occurrence of x

Example: identifier syntax

identifier ::= letter (letter | digit)*

digit = 70" | oo |9

letter - L I 2 . S N A

"

Languages and Syntax

Regular Languages

Regular Language

Definition
A language is regular if it can be expressed with a single regular
expression or with multiple non-recursive regular expressions.

Regular languages can be used to specify the lexem to be translated
to tokens by the lexer.

Biggest advantage: a regular language can be recognised with a finite
state machine.

Using results from automata theory and theory of algorithms, we can
automatically build recognisers from regular expressions (topic of
next lecture).

Regular language to program

Given the following:

- cis a lookahead character;
+ next() consumes the next character;
- error() quits with an error message; and

- first (exp) is the set of initial characters of exp.

Then we can build a program to recognise a regular language.

RE pr(RE)

“x if (c =="x") next() else error ();
(exp) pr(exp);

[exp] if (cin first (exp)) pr(exp);

expx while (c in first (exp)) pr(exp);

exp+ pr(exp); while (c in first (exp)) pr(exp);

fact, ... fact,

pr(factl); .. ; pr(factn);

terms| ... |term,

switch (c¢) {

case c in first(term1) : pr(terml);

case

case ¢ in first(termn) : pr(termn);

default : error();

}

RE = Regular Expression, pr = program

This only works if the grammar is left-parsable.

14

Definition: left-parsable
A grammar is left-parsable if:

terms|...|term, The terms do not share any initial symbols.

fact, ... fact, If fact; contains the empty symbol then fact;
and factj,, do not share any common initial
symbols.

[exp], expx The initial symbols of exp cannot contain a

symbol which belong to the first set of an ex-
pression following exp.

Left-parsable grammar examples

G = A|B

A o= at b] first(A) = {'a’}

B === "g° [l first(B) = {'c’}
input : "ab”

G = [A] B

A = 'a’ | 'b’ /] first(A) = {"a’,'b"}
B 28 °g° [l first(B) = {'c’}
input : "bc”

Non left-parsable grammar examples

G ::= A| B

A = a’ ‘b’ /] first(A) = {'a’}

B ::= 'a’ 'c’ [/ first(B) = {'a'}
input : "ac”

G = [A] B

A = a’ | b’ /] first(A) = {"a’,'b’}
B ::= 'b’ 'c’ /] first(B) = {'b’}

input: "bc”

G ::= AB
A = 'a’ | b L e /] first(A) = {"a’, ‘b, €}
B ::= 'b’" 'c’ /] first(B) = {'b"}

input: "bc”

Example: recognizing identifiers

Identifier syntax (example)

identifier ::= letter (letter | digit)*
digit R L R
letter - L I 2 S R A

Java-ish Program

void ident() {
if (c is in [a-zA-Z])
letter ();
else
error ();
while (c is in [a-zA-Z0-9]) {
switch (c) {

case ¢ is in [a-zA-Z] : letter ();

case c is in [0-9] : digit();
default : error();

b1l

void letter () {
if (c is in [a-zA-Z]) next();
else error();

}

void digit() {
if (c is in [0-9]) next();
else error();

}

19

More “realistic” Java version

void ident() {
if (Character.islLetter(c))
next ();
else
error ();
while (Character.isLetterOrDigit(c))
next ();

20

Lexical Analysis

Lexical Analysis

Building a Lexer

Role of lexical analysiser

The main role of the lexical analyser (or lexer) is to read a bit of the
input and return a token.

Java Lexer class:

class Lexer {
public Token nextToken() f{
// return the next token, ignoring white spaces

}

White spaces are usually ignored by the lexer. White spaces are:

- white characters (tabulation, newline, ...)

- comments (any character following “//” or enclosed between
M/*n and u*/n

21

What is a token?

A token consists of a category and other additional information.

Example of token categories

IDENTIFIER
NUMBER
STRING_LITERAL
EQ

ASSIGN

PLUS

LPAR

O

Java Token class:

foo, main, cnt,

0, -12, 1000,
"Hello world!”, "a”,
"

(

class Token {
Category category;
String data;
Position pos;

}

// Java enumeration
// stores number or string
// line/column number in source

22

Given the following C program:

int foo(int i) {
return i+2;

the lexer will return

INT IDENTIFIER("foo"”) LPAR INT IDENTIFIER("i") RPAR LBRA
RETURN IDENTIFIER(”i"”) PLUS NUMBER("2") SEMICOLON
RBRA

23

A Lexer for Simple Arithmetic Expressions

Example: BNF syntax

identifier ::= letter (letter | digit)*

digit = "0" | s |9

letter - L I 2 Y N I A
number = digit+

plus o= Tt

minus o=

24

Example: token definition

class Token {

enum Category {
IDENTIFIER
NUMBER,
PLUS,
MINUS,
INVALID

}

// fields
Category category;
String data;
Position position;

// constructors
Token(Category cat) {...}
Token(Category cat, String data) {...}

25

Example: tokeniser implementation

class
Scan

Toke
ch

/!l
if
if
if
//
if

Tokeniser {
ner scanner;

n next() {
ar ¢ = scanner.next();

skip white spaces

(Character.isWhitespace(c)) return next();

(

c
(c

identifier
(Character.islLetter(c)) {
StringBuilder sb = new StringBuilder ();
sb.append(c);
c = scanner.peek();
while (Character.isLetterOrDigit(c)) {
sb.append(c);
scanner.next();
c = scanner.peek();

}

return new Token(Category.IDENTIFIER, sb

= '+') return new Token(Category.PLUS);
= '-') return new Token(Category.MINUS);

.toString ());

26

Example: continued

// number
if (Character.isDigit(c)) {
StringBuilder sb = new StringBuilder ();
sb.append(c);
¢ = scanner.peek();
while (Character.isDigit(c)) {
sb.append(c);
scanner.next();
¢ = scanner.peek();
}
return new Token(Category.NUMBER, sb.toString());

Example: continued

// number
if (Character.isDigit(c)) {

}

StringBuilder sb = new StringBuilder ();
sb.append(c);
¢ = scanner.peek();
while (Character.isDigit(c)) {
sb.append(c);
scanner.next();
¢ = scanner.peek();
}
return new Token(Category.NUMBER, sb.toString());

// else
error ();
return new Token(Category.INVALID);

27

Lexical Analysis

Ambiguous Grammar

Some grammars are ambiguous.

Example 1

comment ::= "/*" x "x/" | "//" .« NEWLINE
div TE

Solution:

Longest matching rule

The lexer should recognized the longest lexeme that corresponds
to the definition.

Project hint: comments are actually considered a special case. Use
peek ahead function from the Scanner, and assume that /* and //
always indicate the start of a comment.

28

Some grammars are ambiguous.

Example 2

number ["-"] digit+
digit c= 0" | L]
plus S

minus o=

Example input: -9
Isit number or minus number ?

29

Some grammars are ambiguous.

Example 2

number digit+
digit = 0" | L]9
plus o= T

minus 25 B8 Y=

Example input: -9
Isit number or minus number ?

Solution:
Delay to parsing stage
Remove the ambiguity and deal with it during parsing

number = digit+
digit B L R B
plus o= "

minus o= "

Next lecture

- Automatic Lexer Generation

30

	Languages and Syntax
	Context-free Language
	Regular Expression
	Regular Languages

	Lexical Analysis
	Building a Lexer
	Ambiguous Grammar

