
Introduction to Instruction Scheduling

EaC Ch. 12

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these
materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved.

Slides updated by Christophe Dubach, Winter 2024

What Makes Code Run Fast?

• Many operations have non-zero latencies
• Modern machines can issue several operations per cycle
• Execution time is order-dependent

(and has been since the 60’s)

Assumed latencies (conservative)

Operation Cycles
load/loadAI 3
store 3
loadI 1
add 1
mult 2
fadd 1
fmult 2
shift 1
branch 0 to 8

• Loads & stores may or may not block
> Non-blocking fill those issue slots

• Branch costs vary with path taken

• Branches typically have delay slots
> Fill slots with unrelated operations
> Percolates branch upward

• Scheduler should hide the latencies
2

Example

w  w * 2 * x * y * z
Simple schedule Schedule loads early

2 registers, 20 cycles 3 registers, 13 cycles

Reordering operations for speed is called instruction scheduling

1 loadAI r0, @w => r1
4 add r1, r1 => r1
5 loadAI r0, @x => r2
8 mult r1, r2 => r1
9 loadAI r0, @y => r2
12 mult r1, r2 => r1
13 loadAI r0, @z => r2
16 mult r1, r2 => r1
18 storeAI r1, @w => r0
21 r1 is free

1 loadAI r0, @w => r1
2 loadAI r0, @x => r2
3 loadAI r0, @y => r3
4 add r1, r1 => r1
5 mult r1, r2 => r1
6 loadAI r0, @z => r2
7 mult r1, r3 => r1
9 mult r1, r2 => r1
11 storeAI r1, @w => r0
14 r1 is free

3

ALU Characteristics

This data is surprisingly hard to
measure accurately
• Value-dependent behavior
• Context-dependent behavior
• Compiler behavior
• Difficult to reconcile

measurement with the data
in the manuals

Intel Xeon E5530 (Mar. 2009)
 operation latencies

Instruction Cost
64 bit integer subtract 1

64 bit integer multiply 3

64 bit integer divide 41

Double precision add 3

Double precision subtract 3

Double precision multiply 5

Double precision divide 22

Single precision add 3

Single precision subtract 3

Single precision multiply 4

Single precision divide 14

4

Instruction Scheduling (Engineer’s View)

The Problem
Given a code fragment for some target machine and the
latencies for each individual operation, reorder the operations
to minimize execution time

The Concept

Schedulerslow
code

fast
code

Machine description

The task
• Produce correct code
• Minimize wasted cycles
• Avoid spilling registers
• Operate efficiently

5

Instruction Scheduling (The Abstract View)

To capture properties of the code, build a precedence graph G
• Nodes n  G are operations with type(n) and delay(n)
• An edge e = (n1,n2)  G if & only if n2 uses the result of n1

The Code

a

b c

d e

f g

h

i
The Precedence Graph

a: loadAI r0, @w => r1
b: add r1, r1 => r1
c: loadAI r0, @x => r2
d: mult r1, r2 => r1
e: loadAI r0, @y => r2
f: mult r1, r2 => r1
g: loadAI r0, @z => r2
h: mult r1, r2 => r1
i: storeAI r1, @w => r0

6

Instruction Scheduling (Definitions)

A correct schedule S maps each n N into a non-negative integer
representing its cycle number, and
1. S(n) ≥ 0, for all n  N (obviously)
2. If (n1,n2)  E, S(n1) + delay(n1) ≤ S(n2)
3. For each type t, there are no more operations of type t in any

cycle than the target machine can issue

The length of a schedule S, denoted L(S), is
L(S) = maxn  N (S(n) + delay(n))

The goal is to find the shortest possible correct schedule.
Sopt is time-optimal if L(Sopt) ≤ L(Si), for all other schedules Si
A schedule might also be optimal in terms of registers, power, or
space….

7

Instruction Scheduling (What’s so difficult?)

Critical Points
• All operands must be available
• Multiple operations can be ready

• Moving operations can lengthen register lifetimes
• Placing uses near definitions can shorten register lifetimes
• Operands can have multiple predecessors
Together, these issues make scheduling hard (NP-Complete)

Local scheduling is the simple case
• Restricted to straight-line code
• Assumes consistent and predictable latencies

8

Instruction Scheduling: The big picture

1. Build a precedence graph, P
2. Compute a priority function over the nodes in P
3. Use list scheduling to construct a schedule, 1 cycle at a time

a. Use a queue of operations that are ready
b. At each cycle

I. Choose a ready operation and schedule it
II. Update the ready queue

Local list scheduling
• The dominant algorithm for twenty+ years
• A greedy, heuristic, local technique (within a basic block)

9

Local List Scheduling

Cycle  1
Ready  leaves of P
Active  Ø

while (Ready  Active  Ø)
 if (Ready  Ø) then
 remove highest priority op from Ready
 S(op)  Cycle
 Active  Active  op

 Cycle  Cycle + 1

 for each op  Active
 if (S(op) + delay(op) ≤ Cycle) then
 remove op from Active
 for each successor s of op in P
 if (s is ready) then
 Ready  Ready  s

Removal in priority order

op has completed execution

If successor’s operands are
ready, add it to Ready

10

Scheduling Example

1. Build the precedence graph

The Code The Precedence Graph

a: loadAI r0, @w => r1
b: add r1, r1 => r1
c: loadAI r0, @x => r2
d: mult r1, r2 => r1
e: loadAI r0, @y => r2
f: mult r1, r2 => r1
g: loadAI r0, @z => r2
h: mult r1, r2 => r1
i: storeAI r1, @w => r0

11

Scheduling Example

1. Build the precedence graph

The Code

a

b c

d e

f g

h

i
The Precedence Graph

a: loadAI r0, @w => r1
b: add r1, r1 => r1
c: loadAI r0, @x => r2
d: mult r1, r2 => r1
e: loadAI r0, @y => r2
f: mult r1, r2 => r1
g: loadAI r0, @z => r2
h: mult r1, r2 => r1
i: storeAI r1, @w => r0

12

Scheduling Example

1. Build the precedence graph
2. Determine priorities: longest latency-weighted path

The Code

a

b c

d e

f g

h

i
The Precedence Graph

a: loadAI r0, @w => r1
b: add r1, r1 => r1
c: loadAI r0, @x => r2
d: mult r1, r2 => r1
e: loadAI r0, @y => r2
f: mult r1, r2 => r1
g: loadAI r0, @z => r2
h: mult r1, r2 => r1
i: storeAI r1, @w => r0

Operation Cycles
load/loadAI 3
store 3
loadI 1
add 1
mult 2
fadd 1
fmult 2
shift 1
branch 0 to 8

13

Scheduling Example

1. Build the precedence graph
2. Determine priorities: longest latency-weighted path

The Code

a

b c

d e

f g

h

i
The Precedence Graph

3

5
8

7

9
10

12
10

13
a: loadAI r0, @w => r1
b: add r1, r1 => r1
c: loadAI r0, @x => r2
d: mult r1, r2 => r1
e: loadAI r0, @y => r2
f: mult r1, r2 => r1
g: loadAI r0, @z => r2
h: mult r1, r2 => r1
i: storeAI r1, @w => r0

Operation Cycles
load/loadAI 3
store 3
loadI 1
add 1
mult 2
fadd 1
fmult 2
shift 1
branch 0 to 8

14

Scheduling Example

1. Build the precedence graph
2. Determine priorities: longest latency-weighted path
3. Perform list scheduling

The Code

a

b c

d e

f g

h

i
The Precedence Graph

3

5
8

7

9
10

12
10

13
a: loadAI r0, @w => r1
b: add r1, r1 => r1
c: loadAI r0, @x => r2
d: mult r1, r2 => r1
e: loadAI r0, @y => r2
f: mult r1, r2 => r1
g: loadAI r0, @z => r2
h: mult r1, r2 => r1
i: storeAI r1, @w => r0

15

Scheduling Example

1. Build the precedence graph
2. Determine priorities: longest latency-weighted path
3. Perform list scheduling

Scheduled Code

a

b c

d e

f g

h

i
The Precedence Graph

3

5
8

7

9
10

12
10

13

New register name used

1 loadAI r0, @w => r1
2 loadAI r0, @x => r2
3 loadAI r0, @y => r3
4 add r1, r1 => r1
5 mult r1, r2 => r1
6 loadAI r0, @z => r2
7 mult r1, r3 => r1
9 mult r1, r2 => r1
11 storeAI r1, @w => r0

16

More on List Scheduling

List scheduling breaks down into two distinct classes

Variations on list scheduling
• Prioritize critical path(s)
• Schedule last use as soon as possible
• Depth first in precedence graph (minimize registers)
• Breadth first in precedence graph (minimize interlocks)
• Prefer operation with most successors

Forward list scheduling
• Start with available operations
• Work forward in time
• Ready  all operands available

Backward list scheduling
• Start with no successors
• Work backward in time
• Ready  latency covers uses

17

Local Scheduling

• Assuming the machine can execute at each cycle:
 2 ALU operations (including loadI, cmp, branch)
 1 memory operation (e.g. store or load)

cbr

cmp store1 store2 store3 store4 store5

add1 add2 add3 add4 addI

loadI1 lshift loadI2 loadI3 loadI4

Block from SPEC
benchmark “go”

Operation load loadI add addI store cmp

Latency 1 1 2 1 4 1

1

2 5 5 5 5 5

7 7 7 7 7

88888
Latency to

the cbr

Subscript to
identify

instruction

18

Local Scheduling (using latency to root as priority)

Int Int Mem
1 loadI1 lshift

2 loadI2 loadI3

3 loadI4 add1

4 add2 add3

5 add4 addI store1

6 cmp store2

7 store3

8 store4

9 store5

10

11

12

13 cbr

Forward Schedule
Int Int Mem

1 loadI4

2 addI lshift

3 add4 loadI3

4 add3 loadI2 store5

5 add2 loadI1 store4

6 add1 store3

7 store2

8 store1

9

10

11 cmp

12 cbr

Backward Schedule

Forward and backward can produce different results
19

The more complete picture

Exemple: LLVM compilation flow

• Instruction selection
 choose best instructions that matches IR

• Pre-RA instruction scheduling
 performed on virtual register
 tries to minimize register pressure

• Register Allocation (RA)
 introduce physical registers
 goal is to minimize spilling

• Post-RA instruction scheduling
 help scheduling spill code
 more constrained (physical registers introduce false

dependencies and cannot introduce new registers)

Instruction selection

Pre-RA scheduling

Register allocation

Post-RA scheduling

20

Next Lecture

• Object Oriented Programming Support

21

	Local Instruction Scheduling — A Primer for Lab 3 —
	What Makes Code Run Fast?
	Example
	Slide 4
	Instruction Scheduling (Engineer’s View)
	Instruction Scheduling (The Abstract View)
	Instruction Scheduling (Definitions)
	Instruction Scheduling (What’s so difficult?)
	Instruction Scheduling
	Local List Scheduling
	Scheduling Example
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	More List Scheduling
	Slide 18
	Slide 19
	Slide 20
	Slide 21

