Compiler design

Lecture 6: Bottom-Up Parsing
(EaC83.4)

Christophe Dubach
Winter 2023

Timestamp: 2023/01/17 11:38:00

https://www.pngegg.com/en/png-sjznz

Top-Down Parser

A Top-Down parser builds a derivation by working from l-
the start symbol to the input sentence. —

Bottom-Up Parser

A Bottom-Up parser builds a derivation by working from T'_
the input sentence back to the start symbol. —

Bottom-Up Parsing

Example: CFG
Goal :== aABe

A == Abc
A = b
B w=d

Input: abbcde

Bottom-Up Parsing
abbcde

Bottom-Up Parsing

Example: CFG
Goal == aABe
A == Abc

Input: abbcde

Bottom-Up Parsing

abbcde
aAbcde

Bottom-Up Parsing

Example: CFG
Goal :== aABe

Input: abbcde

Bottom-Up Parsing

abbcde
aAbcde
aAde

Bottom-Up Parsing

Example: CFG
Goal :== aABe
A = Abc
A = b

Input: abbcde

Bottom-Up Parsing

abbcde

aAbcde
aAde
aABe

Bottom-Up Parsing

Example: CFG

== Abc
b
d

Input: abbcde

Bottom-Up Parsing

abbcde
aAbcde
aAde

Goal

Bottom-Up Parsing

Example: CFG
Goal :== aABe

A == Abc
A = b
B w=d

Input: abbcde

Bottom-Up Parsing

abbcde
aAbcde
productions aAde reductions
aABe
Goal

Note that the production follows a rightmost derivation.

Leftmost vs Rightmost derivation

Leftmost vs Rightmost derivation

Example: CFG
Goal == aABe

A== Abcl|b
B = d
Leftmost derivation Rightmost derivation
a/ABe aABe
aAbcBe aAde
abbcBe aAbcde
abbcde abbcde

LL parsers LR parsers

Shift-Reduce Parser

Shift-reduce parser

- It consists of a stack and the input
- It uses four actions:

1. shift: next symbol is shifted onto the stack

2. reduce: pop the symbols Yy, ..., Y; from the stack that form the
right member of a production X ::= Y, ..., Y

3. accept: stop parsing and report success

4. error: error reporting routine

How does the parser know when to shift or when to reduce?

Similarly to a top-down parser, could back-track if wrong decision
made or look ahead to decide.

Can build a DFA to decide when we should shift or reduce (will not
see it in this course).

Shift-reduce parser

Example: CFG
Goal == aABe

A = Abc | b

B = d

Operation:

Input Stack

abbcde

Shift-reduce parser

Example: CFG
Goal :== aABe
A == Abclb
B w=d

Operation: shift

Input Stack
bbcde d

Shift-reduce parser

Example: CFG
Goal := aABe
A = Abc | b
B = d
Operation: shift
Input Stack

bcde ab

Shift-reduce parser

Example: CFG
Goal == aABe

A = Abclb

B w=d

Operation:
Input Stack
bcde ab

Can lookahead one symbol to make decision.
(Knowing what to do is not explain here, need to analyse the
grammar, see EaC§3.5)

Shift-reduce parser

Example: CFG
Goal :== aABe
A = Abcl|b
B w=d

Operation: reduce

Input Stack
bcde aA

Shift-reduce parser

Example: CFG
Goal :== aABe
A = Abcl|b
B w=d

Operation: shift

Input Stack
cde aAb

Shift-reduce parser

Example: CFG
Goal == aABe

A = Abclb

B w=d

Operation:
Input Stack
cde aAb

Can lookahead one symbol to make decision.
(Knowing what to do is not explain here, need to analyse the
grammar, see EaC§3.5)

Shift-reduce parser

Example: CFG
Goal :== aABe
A = Abcl|b
B w=d

Operation: shift

Input Stack
de aAbc

Shift-reduce parser

Example: CFG
Goal == aABe

A = Abcl|b
B w=d
Operation: reduce
Input Stack

de aA

Shift-reduce parser

Example: CFG
Goal == aABe

A = Abcl|b
B w=d
Operation: shift
Input Stack

e aAd

Shift-reduce parser

Example: CFG
Goal == aABe

A == Abc | b
B = d
Operation: reduce
Input Stack

e aAB

Shift-reduce parser

Example: CFG
Goal == aABe

A == Abcl| b
B = d
Operation: shift
e Stack

aABe

Shift-reduce parser

Example: CFG
Goal == aABe

A == Abc| b
B w=d
Operation: reduce
Stack
Input

Goal

Top-Down vs Bottom-Up Parsing

Top-Down

sl Easy to write by hand
sl Easy to integrate with the compiler

'@ Supports a smaller class of grammars

= cannot handle left recursion in the grammar
'@ Recursion might lead to performance issues

sl Table encoding possible for better performance

Top-Down vs Bottom-Up Parsing

Top-Down

sl Easy to write by hand
sl Easy to integrate with the compiler

'@ Supports a smaller class of grammars

= cannot handle left recursion in the grammar
'@ Recursion might lead to performance issues

sl Table encoding possible for better performance

Bottom-Up
sl Very efficient (no recursion)

sl Supports a larger class of grammar
Handles left/right recursion in the grammar

'@ Harder to write by hand
=-Requires generation tools
'@ Rigid integration to compiler

Expressive Power of Grammars

/~ Context-Free Grammars

(r

Lo) LR(k))

\ /
\ ,

N

Language vs. Grammar

/" Context-Free Grammars

LR(k)

LL(K)

) LR(1)
7

A language can be defined by more than one grammar

These grammars might be of different “complexity”
(LL(1), LL(k), LR(k))

= Language complexity # grammar complexity

Real-world examples of parser technology used

Parser generators:

- YACC: bottom up (LR)
- ANTLR: recursive descent (LL)
- JavaCC: recursive descent (LL)

C compilers

- LLVM: hand-written recursive descent parser (LL)
- GCC: started with parser generator (YACC = LR),
now uses hand-written recursive descent (LL)

Java compilers

- Eclipse compiler frontend:

auto-generated using Jikes Parser Generator, bottom-up (LR)
- Intelli) compiler frontend: hand-written recursive descent (LL)
- Open)DK compiler frontend:

hand-written recursive descent (LL)
https://github.com/openjdk/jdk/blob/master/src/jdk.compiler/share/classes/com/sun/tools/javac/ 10
parser/JavacParser.java

https://github.com/openjdk/jdk/blob/master/src/jdk.compiler/share/classes/com/sun/tools/javac/parser/JavacParser.java
https://github.com/openjdk/jdk/blob/master/src/jdk.compiler/share/classes/com/sun/tools/javac/parser/JavacParser.java

Next lecture

- Parse tree and abstract syntax tree

1

	Leftmost vs Rightmost derivation
	Shift-Reduce Parser

