Compiler Design

Lecture 22: Conclusions

Christophe Dubach
Winter 2023

Timestamp: 2023/03/31 16:09:00

Historical Data

42 Years of Microprocessor Trend Data

- T T T T ry
107 1 wmd 7] Transistors
108 F :“AA - | (thousands)
NEYI R “x .
10° | Laat e Single-Thread
we P A Performance
10tk .o A;‘#‘ 0y e | (specINT x 10%)
AL o "
Ad g a8 el Frequency (MHz
el “““:ﬂzﬂ,lt*‘ ol g | Frequency (MH2)
A ® ot g * Typical Power
10% | SRR v’,;;'.v;;gv"v“"’f :.' 4 (Watts)
[)
1 ’ - TS YT et Number of
10 .4 ® .o v hd :‘3 . “| Logical Cores
A v v v vwey
10° —; .) R PO KIPRPURIRGI NG -
| | | |
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Today: Era of Billion-Transist

A .

Apple A13 Apple M1 AMD EPYC Rome
~8B transistors ~16B transistors ~39B transistors

NVIDIA A100 Ampere Xilinx Versal VP1802
~54B transistors ~92B transistors

Inefficiency of General-Purpose Computing

Embedded Processor
Typical energy overhead for every Energy Breakdown

10pJ arithmetic operations:

6% w Arithmetic
+ 70pJ on instruction suppl Clock and
P) BR 24% 42 control
- 40pJ on data supply Data
- - supply
Plus, only 59% of instructions are e
arithmetic!

|
28% SuPPY

[source: Dally et al. Efficient Embedded Computing, IEEE'08]

Advance of Civilization

For humans, Moore’s Law for scaling of brains has ended a long time
ago

- Number of neurons and their firing rate did not change
significantly

Remarkable advancement of civilization via specialization
L")“’;_g"u’.s
1S =

k sS4 . A
. {“\' 12 o e &
{ S | —_— T |
‘), -0 " non i
: l:llﬁl;‘_ - .5‘: ..)
A | \f,’" ™)

https://en.wikichip. ora/wiki/apple/ax/a12

https://en.wikichip.org/wiki/apple/ax/a12

Computers are Following the Same Path:

Diverse Range of Integrated Functionalities

System on Chip

Tempest | Tempest
GPU Core0 [—| GPU Core2 CPU CPU
CPU CPU
GPU Corel || GPU Core3
L2
CC Fabric
VortexVortex
oA CPU | CPU
Depth Engine

alSa s | Sysicache I ;‘u:";! I isplay
I_I Enci
,W' m_l;'i" S::t:slar ngine

Modern SoCs integrate a rich set
of accelerators

- Speed up critical tasks

- Reduce power consumption
and cost

- Increase energy efficiency

https://en.wikichip.org/wiki/apple/ax/a12]

Specialization creates challenges for compilers!

Specialized architecture looks different from general pupose CPU

- coarse-grained specialized instructions: e.g. MxM

- memory hierarchy more complex to manage: local memories

- needs to detect pattern of code in the program: more complex
form of instruction selections

- special optimizations might be needed, e.g. tiling of data to fit
into small accelerator memory

- hardware might be highly parallel, e.g. GPUs with thousands of
threads

Specialized hardware often require specialized languages:
Domain Specific Languages

- have you already used a DSL?

- plenty of others emerging, e.g. tensor algebra, neural networks,
graph algorithms

- all these require compiler support 7

Big research question

Could we design one compiler to rule them all?

- What does the IR would look like?

- What about optimizations?

- General mechanism for finding pattern of code to accelerate?
- Can we deal with multiple front-ends?

- Can we automatically partition a program to run across different
type of devices?

- How to detect and exploit parallelism?

What's next for you?

In this course, we have only scratched the surface of the world of
compilers. Compilation is still a very active research field and there
is plenty of development.

les 1 you want to gain experience with industry compilers:

- For C like languages: LLVM
- For Java like languages: GraalVM / Truffle (from Oracle Labs)

- For JavaScript: V8

& Hot compiler IRs:

- MLIR (related to LLVM)
- WebAssembly (virtual assembly for the web)

I Courses you may also like:

- COMP 764 : High-level Synthesis of Digital Systems
- ECSE 427 /| COMP 310 : Operating Systems
- COMP 409 : Concurrent Programming

E What to read next:

The “Dragon book™:

Compilers: Principles, Techniques, and Tools
Alfred Aho* Monica Lam, Ravi Sethi, Jeffrey
Ullman*

*ACM Turing Award Winners, 2020

u

Compiler” Conferences

- ACM/IEEE International Symposium on Code Generation and

Optimization (CGO)

- ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI)

- ACM SIGPLAN International Conference on Compiler Construction (CC)

- International Conference on Parallel Architectures and Compilation

Techniques (PACT)

- International Conference on Compilers, Architectures, and Synthesis for

Embedded Systems (CASES)

- ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools

for Embedded Systems (LCTES)

- International Conference on High Performance and Embedded

Architectures and Compilers (HiPEAC)

1

& Research in my group (COMP 400, ECSE 498, SURE/SURA)

- Parallel programming abstractions
- Rewrite-based optimizations
- High performance code generation

- High-level hardware synthesis

E Looking for a job related to compilation?

- https://github.com/mgaudet/CompilerJobs

- High demand for compiler (LLVM/MLIR) + Al/ML frameworks
(TensorFlow/PyTorch) skills in industry these days

https://github.com/mgaudet/CompilerJobs

The end

Well, not exactly: last session will be a compiler quizz!

