
Compiler Design
Lecture 2: The view from 35000 feet

Christophe Dubach
Winter 2023

Timestamp: 2023/01/03 15:28:00

1

First Compilers & Programming
Languages

First “Compiler”: 1952

First “compiler”: A-0 System. The term “compiler” was coined by
Grace Hopper in the 1950s.

Automatic Coding for Digital Computers,
Grace Hopper, 1955:

“Compiling [...] which withdraw sub-
routines from a library and operate
upon them, finally linking the pieces
together to deliver, as output, a com-
plete specific program.” Grace Hopper,

US Navy
source: James S. Davis - Image released by the United States Navy with the ID DN-SC-84-05971

Actually more a sort of linker than what we call a compiler today.

2

https://commons.wikimedia.org/wiki/File:Commodore_Grace_M._Hopper,_USN_(covered)_head_and_shoulders_crop.jpg

Fortran, 1957

• First “high-level” programming language.
• Fortran = Formula translation

Simple Fortran II program
C AREA OF A TRIANGLE − HERON ’ S FORMULA
C INPUT − CARD READER UNIT 5 , INTEGER INPUT
C OUTPUT −
C INTEGER VARIABLES START WITH I , J , K , L ,M OR N

READ (5 , 5 0 1) IA , IB , IC
501 FORMAT(3 I 5)

I F (IA . EQ . 0 . OR . IB . EQ . 0 . OR . IC . EQ . 0) STOP 1
S = (IA + IB + IC) / 2 . 0
AREA = SQRT (S * (S − IA) * (S − IB) * (S − IC))
WRITE (6 , 6 0 1) IA , IB , IC , AREA

601 FORMAT(4H A= , I5 , 5H B= , I5 , 5H C= , I5 ,
8H AREA = , F10 . 2 , $13H SQUARE UNITS)

STOP
END

source: Wikipedia

John Bakus,
IBM

source: PIerre.Lescanne, CC BY-SA 4.0, via Wikimedia Commons

3

https://en.wikibooks.org/wiki/Fortran/Fortran_examples
https://creativecommons.org/licenses/by-sa/4.0

Lisp, 1958

• Lisp = List processing language

Simple Lisp 1 program
((Y (LAMBDA (FN)

(LAMBDA (X)
(I F (ZEROP X) 1 (* X (FN (− X 1)))))))

6)

source: Technical Issues of Separation in Function Cells and Value Cells

John McCarthy,
MIT

source: ”null0”, CC BY-SA 2.0, via Wikimedia Commons

Fortran and Lisp are the oldest, and most influencial programming
languages. Both are still in use today!

(Fortran) ImperativeARROWS-ALT-H Functional (Lisp)
4

http://www.nhplace.com/kent/Papers/Technical-Issues.html
https://creativecommons.org/licenses/by-sa/2.0

High-level view

High-level view of a compiler

Compiler Machine
code

Source
code

Errors

• Must recognise legal (and illegal) programs
• Must generate correct code
• Must manage storage of all variables (and code)
• Must agree with OS & linker on format for object code

Big step up from assembly language; use higher level notations

5

Traditional two-pass compiler

FrontEnd
Source
code

BackEnd

IR

Machine
Code

Errors

• Use an intermediate representation (IR)
• Front end maps legal source code into IR
• Back end maps IR into target machine code
• Admits multiple front ends & multiple passes
• Typically, front end is O(n) or O(n log n),
while back end is NPC (NP-complete)

6

A common fallacy two-pass compiler

Frontend

Target 1

Fortran

Backend

Frontend

Target 2

R

Backend

Frontend

Target 3

Java

Backend

FrontendSmalltalk

• Can we build n x m compilers with n+m components?
• Must encode all language specific knowledge in each front end
• Must encode all features in a single IR
• Must encode all target specific knowledge in each back end
• Limited success in systems with very low-level IRs (e.g. LLVM)
• Active research area (e.g. Graal, Truffle)

7

Front End

Front End

Passes

The Frontend

Scanner
Source
code

Tokeniser
token

char
 Parser

AST

Semantic
Analyser

AST

Lexer

IR
Generator

IR

Errors

• Recognise legal (& illegal) programs
• Report errors in a useful way
• Produce IR & preliminary storage map
• Shape the code for the back end

Much of front end construction can be automated

8

The Lexer

Scanner
Source
code

Tokeniser
token

char

 Parser
AST

Semantic
Analyser

AST

Lexer

IR
Generator

IR

Errors

Lexical analysis

• Recognises words in a character stream
• Produces tokens (words) from lexeme
• Collect identifier information (e.g. variable names)
• Typical tokens include number, identifier, +, −, new, while, if
• Lexer eliminates white space (including comments)

Example: x = y+2;
becomes: IDENTIFIER(x) EQUAL IDENTIFIER(y) PLUS CST(2) SC

9

The Parser

Scanner
Source
code

Tokeniser
token

char
 Parser

AST

Semantic
Analyser

AST

Lexer

IR
Generator

IR

Errors

Parsing

• Recognises context-free syntax & reports errors
• Builds an AST (Astract Syntax Tree)
• Hand-coded parsers are fairly easy to build
• Most books advocate using automatic parser generators

In the course project, you will build your own parser

• Will teach you more than using a generator!
• Once you know how to build a parser by hand, using a parser
generator becomes easy

10

Semantic Analyser

Scanner
Source
code

Tokeniser
tokenchar

Parser
AST Semantic

Analyser
AST

Lexer

IR
Generator

IR

Errors

Semantic Analysis

• Guides context-sensitive (“semantic”) analysis
• Checks variable and function declared before use
• Type checking

Type checking example:

i n t foo (i n t a) = { . . . }
void main () {
f l oa t f ;
f = foo (1 , 2) ; // type e r ro r

}

11

Intermediate Representation (IR) Generator

Scanner
Source
code

Tokeniser
token

char

 Parser
AST

Semantic
Analyser

AST

Lexer

IR
Generator

IR

Errors

• Generates the IR (Intermediate Representation) used by the rest
of the compiler.

• Sometimes the AST is the IR.

12

Front End

Representations

Simple Expression Grammar

1 goal → expr
2 expr → expr op term
3 | term
4 term → number
5 | id
6 op → +
7 | −

S = goal
T = { number , id , + , − }
N = { goal , expr , term , op }
P = { 1 , 2 , 3 , 4 , 5 , 6 , 7 }

• This grammar defines simple expressions with addition &
subtraction over “number” and “id”

• This grammar, like many, falls in a class called “Context-Free
Grammars”, abbreviated CFG

13

Derivations

Given a CFG, we can derive sentences by repeated substitution

Production Result
goal

1 expr
2 expr op term
5 expr op y
7 expr - y
2 expr op term - y
4 expr op 2 - y
6 expr + 2 - y
3 term + 2 - y
5 x + 2 - y

To recognise a valid sentence in a CFG, we reverse this process and
build up a parse tree

14

Parse tree

x + 2 - y

goal

expr

op termexpr

op termexpr

term

id(x)

+ num(2)

- id(y)

This contains a lot of unnecessary information.

15

Abstract Syntax Tree (AST)

-

+

id(x) num(2)

id(y)

The AST summarises grammatical structure, without including
detail about the derivation.

• Compilers often use an abstract syntax tree
• This is much more concise
• ASTs are one kind of IR

16

Back end

The Back end

Instruction
Selection

AST

Register
Allocation

AST

Instruction
Scheduling

IR

Errors

Machine
code

• Translate IR into target machine code
• Choose instructions to implement each IR operation
• Decide which value to keep in registers
• Ensure conformance with system interfaces
• Automation has been less successful in the back end

17

Back end

Instruction Selection

Instruction Selection

Instruction
Selection

AST Register
Allocation

AST Instruction
Scheduling

IR

Errors

Machine
code

• Produce fast, compact code
• Take advantage of target features such as addressing modes
• Usually viewed as a pattern matching problem

Example: d = a * b + c

option 1

MUL rt, ra, rb
ADD rd, rt, rc

option 2

MADD rd, ra, rb, rc

18

Back end

Register Allocation

Register Allocation

Instruction
Selection

AST

Register
Allocation

AST

Instruction
Scheduling

IR

Errors

Machine
code

• Have each value in a register when it is used
• Manage a limited set of resources
• Can change instruction choices & insert LOADs & STOREs
(spilling)

• Optimal allocation is NP-Complete (1 or k registers)
• Graph colouring problem
• Compilers approximate solutions to NP-Complete problems

19

Back end

Instruction Scheduling

Instruction Scheduling

Instruction
Selection

AST

Register
Allocation

AST

Instruction
Scheduling

IR

Errors

Machine
code

• Avoid hardware stalls and interlocks
• Use all functional units productively
• Can increase lifetime of variables (changing the allocation)
• Optimality:

• Optimal scheduling is NP-Complete in nearly all cases
• Heuristic techniques are well developed

20

Optimiser

Three Pass Compiler

FrontEnd
Source
code

Middle
End

IR
 BackEnd Machine

Code

Errors

IR

Compiler Optimization (or code improvement):

• Analyses IR and rewrites/transforms IR
• Primary goal is to reduce running time of the compiled code

• May also improve code size, power consumption, …

• Must preserve “meaning” of the code
• Measured by values of named variables

• Subject of Compiler Optimisation course

21

The Optimiser

Modern optimisers are structured as a series of passes
e.g. LLVM

Opt
1

IR

IR

Errors

IR

Opt
2

IR
 IR

Opt
N

...

• Discover & propagate some constant value
• Move a computation to a less frequently executed place
• Specialise some computation based on context
• Discover a redundant computation & remove it
• Remove useless or unreachable code
• …

22

Modern Restructuring Compiler

FrontEnd
Source
code

Middle
End

IR
 BackEnd Machine

Code

Errors

IR

IR
Generator

LL
AST

Restructurer
HL
AST

Translate from high-level (HL) IR to low-level (LL) IR

• Blocking for memory hierarchy and data reuse
• Parallelisation (including vectorization)

All of above is based on data dependence analysis

• Also full and partial inlining

Compiler optimizations are not covered in this course

23

Role of the runtime system

• Memory management services
• Allocate, in the heap or on the stack
• Deallocate
• Collect garbage

• Run-time type checking
• Error processing
• Interface to the operating system (input and output)
• Support for parallelism (communication and synchronization)

24

Programs related to compilers

• Pre-processor:
• Produces input to the compiler
• Processes Macro/Directives (e.g. #define, #include)

• Assembler:
• Translate assembly language to actual machine code (binary)
• Performs actual allocation of variables

• Linker:
• Links together various compiled files and/or libraries
• Generate a full program that can be loaded and executed

• Debugger:
• Tight integration with compiler
• Uses meta-information from compiler (e.g. variable names)

• Virtual Machines:
• Executes virtual assembly
• typically embedded a just-in-time (jit) compiler

25

Next lecture

• Introduction to Lexical Analysis (real start of compiler course)
• Decomposition of the input into a stream of tokens
• Construction of scanners from regular expressions

26

	First Compilers & Programming Languages
	High-level view
	Front End
	Passes
	Representations

	Back end
	Instruction Selection
	Register Allocation
	Instruction Scheduling

	Optimiser

