
Compiler Design
Lecture 16: Liveness Analysis

Christophe Dubach
Winter 2023

Some material from Prof. Michelle Strout, CS553, Colorado State University.

Timestamp: 2023/03/05 15:35:00

1

Proper register allocation

Assign each virtual register to an architectural register (if possible).

Example using virtual registers:

. da ta
x : . space 4
y : . space 4

. t e x t
la v0 , x
lw v1 , (v0)
add v2 , v0 , v1
la v3 , y
lw v4 , (v3)
sub v5 , v4 , v2
add v6 , v2 , v4
sw v5 , (v0)
sw v6 , (v3)

After “‘proper” register allocation:

. da ta
x : . space 4
y : . space 4

. t e x t
la $t0 , x
lw $t1 , ($t0)
add $t2 , $t0 , $ t 1
la $t3 , y
lw $t4 , ($t3)
sub $t5 , $t4 , $t2
add $t6 , $t2 , $t4
sw $t5 , ($t0)
sw $t6 , ($t3)

2

Problem:

• What if more virtual registers used than the number of
architectural registers available?

Solution:

• RECYCLE Re-cycle architectural registers.
• ⇒ Need to know which values is going to be used in the future.

Terminology

From now on in this lecture, we will use the term variable to denote
a virtual register.

3

Liveness

Definition
A variable (virtual register) is live at some point in the program if it
has previously been defined by an instruction and will be used by
an instruction in the future. It is dead otherwise.

Lightbulb Two variables can use the same architectural register if they are
never used at the same time, i.e. never simulataneously live.

⇒ Register allocation use liveness information.

4

Example:

.data
x: .space 4
y: .space 4
.text Live after instruction:

la v0, x v0
lw v1, (v0) v0 v1
add v2, v1, v1 v0 v2
la v3, y v0 v2 v3
lw v4, (v3) v0 v2 v3 v4
sub v5, v4, v2 v0 v2 v3 v4 v5
add v6, v2, v4 v0 v3 v5 v6
sw v5, (v0) v3 v6
sw v6, (v3)

Question: what is the minimum number of architectural registers
needed?

5

Computing liveness is more complicated in the presence of control
flow (e.g. loops, if-then-else).

Assembly pseudo-code: 1

a = 0
L1 : b = a + 1

c = c + b
a = b*2
i f (a <9) goto L1
return c

Question: what is the live range of b?

To answer this question we need to understand the dynamic flow of
the program execution.

1We illustrate concepts at a slightly higher level than assembly from this point on.

6

Control-Flow Graph (CFG)

Concept invented in 1970 by:

Frances Allen (1932–2020), IBM,
(1st woman to receive Turing

Award in 2006!)
source: Rama, CC BY-SA 2.0 FR, wikimedia

a = 0
L1 : b = a + 1

c = c + b
a = b*2
i f (a <9) goto L1
return c

Directed graph:

entry

1: a = 0

2: b = a + 1

3: c = c + b

4: a = b * 2

5: a < 9

True

6: return c

False

7

https://commons.wikimedia.org/wiki/File:Allen_mg_2528-3750K-b.jpg

What is the live range of b?
• b is used in statement 4, so b is live on
the 3→ 4 edge

• since statement 3 does not define b, b is
also live on the 2→ 3 edge

• statement 2 defines b, so any value of b
on the 1→ 2 and 5→ 2 edges are not
needed, so b is dead along these edges

b live range is 2→ 3→ 4

entry

1: a = 0

2: b = a + 1

3: c = c + b

4: a = b * 2

5: a < 9

True

6: return c

False

8

Live range of a:
• 1→ 2 and 4→ 5→ 2

Live range of b:
• 2→ 3→ 4

Live range of c:
• entry → 1→ 2→ 3→ 4→ 5→ 2
and 5→ 6

entry

1: a = 0

2: b = a + 1

3: c = c + b

4: a = b * 2

5: a < 9

True

6: return c

False

Lightbulb Since a and b never simultaneously live, can share a register.

9

Terminology

Flow Graph
• a Control Flow Graph (CFG) has out-edges
that leads to successor nodes and in-edges
that come from predecessor nodes

• pred(n) = set of all predecessors of node n
succ(n) = set of all successors of node n

Examples
• Out-edges of node 5: 5→ 6 and 5→ 2
• succ(5) = {2,6}
• pred(5) = {4}
• pred(2) = {1,5}

entry

1: a = 0

2: b = a + 1

3: c = c + b

4: a = b * 2

5: a < 9

True

6: return c

False

10

Uses and Defs

Def (definition)
• A write of a value to a variable
• def(v) = set of CFG nodes that define variable v
• def(n) = set of variables defined at node n

1: a = 0

Use
• A read of a variable’s value
• use(v) = set of CFG nodes that use variable v
• use(n) = set of variables used at node n

5: a < 9

11

More precise definition of liveness

A variable v is live on a CFG edge if
• ∃ a directed path from that edge to a
use of v (node ∈ use(b)) and

• that path does not go through any def
of v (nodes /∈ def(v)).

v live

∉def(v)

∉def(v)

∉def(v)

∉def(v)

∈use(v)

12

Computing Liveness

Flow of Liveness

Data-flow

• Liveness of variables is a property that flows through the edges
of the CFG

Direction of flow

• Liveness flows backward in the CFG:
behaviour of future nodes determines liveness at a given node

13

Example: flow of liveness for a

entry

1: a = 0

2: b = a + 1

3: c = c + b

5: a < 9

4: a = b * 2

True

6: return c

False

Example: flow of liveness for b

entry

1: a = 0

2: b = a + 1

3: c = c + b

4: a = b * 2

5: a < 9

True

6: return c

False

14

Liveness at Nodes

We have liveness on edges
• before and after each node

...

1: a = 0
just before computation

just after computation

...

Two more definitions:

• A variable is live-out at a node if it is live on any of that node’s
out-edges

• A variable is live-in at a node if it is live on any of that node’s
in-edges

15

Computing Liveness

Rules for computing liveness

1. Generate liveness:
v ∈ use(n) ⇒ v ∈ LIVEin(n)

2. Push liveness across edges:
v ∈ LIVEin(n) ⇒ ∀p∈pred(n)v ∈ LIVEout(p)

3. Push liveness across nodes:
v ∈ LIVEout(n) ∧ v /∈ def (n) ⇒ v ∈ LIVEin(n)
This is called the transfer function

n:

LIVEin

∈use

n:

LIVEin

LIVEoutLIVEoutLIVEout

n:

LIVEin

LIVEout

∉def

Data-flow equations

LIVEin(n) = use(n)
1
∪ (LIVEout(n)− def (n))

3

LIVEout(n) =
⋃

∀s∈succ(n)

LIVEin(s)

2

16

Solving the Data-flow equations

1: for all node n ∈ CFG do
2: LIVEin(n) = ∅
3: LIVEout(n) = ∅
4: end for
5: repeat
6: for all node n ∈ CFG do
7: LIVE′in(n) = LIVEin(n)
8: LIVE′out(n) = LIVEout(n)
9: LIVEin(n) = use(n) ∪ (LIVEout(n)− def (n))
10: LIVEout(n) =

⋃
∀s∈succ(n)

LIVEin(s)

11: end for
12: until LIVE′in(n) = LIVEin(n) ∧ LIVE′out(n) = LIVEout(n)∀n

This is a fix-point algorithm for iterative liveness analysis.

17

Example

entry

1: a = 0

2: b = a + 1

3: c = c + b

4: a = b * 2

5: a < 9

True

6: return c

False

node use def 1st 2nd 3rd 4th 5th 6th 7th
in out in out in out in out in out in out in out

1 a a a ac c ac c ac c ac
2 a b a a bc ac bc ac bc ac bc ac bc ac bc
3 bc c bc bc b bc b bc b bc b bc bc bc bc
4 b a b b a b a b ac bc ac bc ac bc ac
5 a a a a ac ac ac ac ac ac ac ac ac ac ac
6 c c c c c c c c

Data-flow equations

LIVEin(n) = use(n) ∪ (LIVEout(n)− def (n))

LIVEout(n) =
⋃

∀s∈succ(n)

LIVEin(s)

18

There is something inefficient about this process.

entry

1: a = 0

2: b = a + 1

3: c = c + b

4: a = b * 2

5: a < 9

True

6: return c

False

For instance, consider the 3→ 4 edge in the
graph:
• LIVEout(4) is used to compute LIVEin(4)
• LIVEin(4) is used to compute LIVEout(3)

Lightbulb The algorithm would converge faster if we
process the nodes backwards.

19

Backward Liveness Analysis

1: for all node n ∈ CFG do
2: LIVEin(n) = ∅
3: LIVEout(n) = ∅
4: end for
5: repeat
6: for all node n ∈ CFG in reverse pre-order do
7: LIVE′in(n) = LIVEin(n)
8: LIVE′out(n) = LIVEout(n)
9: LIVEout(n) =

⋃
∀s∈succ(n)

LIVEin(s)

10: LIVEin(n) = use(n) ∪ (LIVEout(n)− def (n))
11: end for
12: until LIVE′in(n) = LIVEin(n) ∧ LIVE′out(n) = LIVEout(n)∀n

20

Example with Backward Liveness Analysis

entry

1: a = 0

2: b = a + 1

3: c = c + b

4: a = b * 2

5: a < 9

True

6: return c

False

node use def 1st 2nd 3rd
out in out in out in

6 c c c c
5 a c ac ac ac ac ac
4 b a ac bc ac bc ac bc
3 bc c bc bc bc bc bc bc
2 a b bc ac bc ac bc ac
1 a ac c ac c ac c

Converges in only 3 iterations!

Data-flow equations

LIVEout(n) =
⋃

∀s∈succ(n)

LIVEin(s)

LIVEin(n) = use(n) ∪ (LIVEout(n)− def (n))

21

More performance considerations

Basic Block
A straight sequence of assembly instruction which (usually) finishes
with a branch/jump instruction.

Key property: Either all the instructions in the sequence execute or
none execute.

Can significantly decrease the size that a CFG occupies in memory by
grouping nodes that have a single predecessor and a single
successor into basic blocks.

The instructions in a basic block can be simply represented as a list
(rather than a graph).

22

Example

No basic blocks:

entry

1: a = 0

2: b = a + 1

3: c = c + b

4: a = b * 2

5: a < 9

True

6: return c

False

With basic blocks:

1: a = 0

2: b = a + 1
 c = c + b
 a = b * 2

a < 9

True

3: return c

False

entry

use(2) ={a, c}
def (2) ={a,b, c}

23

Next lecture

• Proper register allocation

24

	Computing Liveness

