Compiler Design

Lecture 13: Code generation : Logical & Relational
Operators, and Control Flow

Christophe Dubach
Winter 2023

Timestamp: 2023/02/07 10:28:00

Logical & Relational Operators

How to represent the following in assembly?

x<10 && y>3

Answer: it depends on the target machine.

Several approaches:

- Numerical representation
- Positional Encoding (e.g. MIPS assembly)
- Conditional Move and Predication

Correct choice depends on both context and ISA
(Instruction Set Architecture)

Numerical Representation

Assign numerical values to true and false
- In C, false = 0 and true = anything else.

Use comparison operator from the ISA to get a value from a
relational operator:

- MIPS has SLT instruction (Set Less Than);

- and SLTU instruction (Set Less Than Unsigned)

< oslt $1, 2, $3# if ($2<$3) $1=1 else $1=0

Examples
Assuming x and y are in registers $x and $y.

X <y slt $t0, $x, $y

X <=y slt $to, $y, $x # y<x
xori $t1, $t0, Ox1 # reverse result

X ==y xor $t0,$x,$y # which bits different?
sltu $t1,$t0,1 # no difference if 0

X l=y xor $t0,%$x,%y # which bits different?
sltu $t1,$zero,$t0 # different if 0 <

For the other two missing relational operators, swap the arguments.

Positional Encoding

What if the ISA does not provide comparison operators?

- Use conditional branch to interpret the result of a relational
operator.

Example: x<y

blt $x, $y, LT
1i $to, o0
j END
LT : 1i $to, 1
END:

The absence of comparison instructions is not as bad as you think.
Most boolean expressions are used with branching anyway.

Example
if (x <vy)
z = 3;

else
zZ = &4,

Corresponding assembly code

bge $x, $y, ELSE
1i $z, 3
j END

ELSE: 1i $z, 4

END:

What about logical operators &§& and | | ?

In the general case, use branching!
Example with function calls
foo() [l bar()

If foo() returns true, bar is never called! This is called a

Simpler example

x |y

Corresponding assembly code

bne $x, $zero, TRUE
bne $y, $zero, TRUE
1i $to, 0
j END

TRUE: 1i $to, 1

END: ...

Combining Logical and Relational Operators

If supported by the ISA, simplest approach consists of using
numerical encoding for relational operators and positional for
logical operators.

Example

x<4 || y<6

Corresponding assembly code

li Sto, 4
slt $t1, Sx, $to
bne $t1, S$zero, TRUE

li st2, 6
slt $t3, Sy, St2
bne $t3, S$zero, TRUE

li $t4, 0
j END

TRUE: Li St4, 1
END:

Conditional Move and Predication

Conditional move and predication can simplify code
(if ISA supports it!)

Example
if (x <vy)
z = 3;

else
zZ = 4,

Corresponding (naive) assembly code

Conditional Move ‘ Predicated Execution
i $t1, 3
U $t2, 4 slt $te, $x, $y

$t0?21i $z, 3

slt $to, $x, $y $to?li $z, 4
H ?

cmov $z, $to, $t1, $t2

Unfortunately, these instructions are not available on MIPS
(they are on ARM: i.e. condition flags).

Last words on logical and relational operators

ISA instructions/features available, e.g.:

SLT instruction;
Predication support.

Context, e.g.:

Assignment of same value in each branch of an if-then-else;
Presence of short-circuit logical operators.

Logical & Relational Operators

Code Generation

Need to have unique labels that we can emit.

Label class

class Label {
static counter
String name;
Label() { name = "label”+counter++; }

0;

}

1

Pattern-Matching Expressions

Expression code generator class

class ExprCodeGen {

Register visit(Expr expr) {
return switch (expr) {
case ... ->
case ... ->
}
}
}

Pattern-Matching Expressions

LT Expression

case BinOp bo -> {
Register lhsReg visit(bo.lhs);
Register resReg = newVirtualRegister ();

switch (bo.op) {
case LT:
Register rhsReg = visit(bo.rhs);

emit(”slt”, resReg, lhsReg, rhsReg);
break;

yield resReg;

Logical OR || Expression

case BinOp bo -> {
Register lhsReg = visit(bo.lhs);
Register resReg = newVirtualRegister ();

switch(bo.op) {
case OR:
Label truelLbl = new Label();

Label endLbl = new Label();
emit(”"bne”, lhsReg, zeroReg, truelbl);

Register rhsReg = visit(bo.rhs);
emit("bne”, rhsReg, zeroReg, truelbl);

emit(”"li"”, resReg, 0);
emit(”j", endLbl);

emit(truelbl);
emit("li"”, resReg, 1);

emit(endLbl);

}
yield resReg;

}

Control-Flow

Control-Flow

- If-then-else
- Loops (for, while, ...)

- Switch/case statements

If-then-else
Follow the model for evaluating relational and boolean with
branches.

Branching versus predication (e.g. 1A-64, ARM ISA) trade-off:

- Frequency of execution:
uneven distribution, try to speedup common case

- Amount of code in each case:
unequal amounts means predication might waste issue slots

- Nested control flow:
any nested branches complicates the predicates and makes
branching attractive

16

Basic pattern

|

- evaluate condition before the loop
Pre-test .
(if needed)
l - evaluate condition after the loop
Looplbody) - branch back to the top (if needed)
Post-test
l , for and loops follow a
very similar pattern.
Next block

|

Example: for loop
for (i=0; i<100; i++) {

body
} .
next stmt Corresponding assembly
1i $to, 0
1i $t1, 100
l bge $t0,$t1, NEXT

800V body

addi $to, $to, 1
Loop body blt $to, $t1, BODY

NEXT: next stmt
Post-test

19

Break/continue

Most modern programming languages include a break statement
(loops, switch statements)

for (...) {

i ()

break;

In such cases, use an unconditional branch to the next statement
following the control-flow construct (loop or case statement).

For skip/continue statement, branch to the next iteration (loop start)

20

Case Statement (switch)

Case statement

1. Evaluate the controlling expression
switch () { 2. Branch to the selected case
case a’': stmt1;
case 'b’: stmt2; break; 3. Execute the code for that case
} case ‘c: stmt3; 4. Branch to the statement after the
case
Part 2 is key!

Strategies:

- Linear search (nested if-then-else)
- Build a table of case expressions and use binary search on it

- Directly compute an address (requires dense case set)

21

Exercise

Knowing that the character 'a’ corresponds to the decimal value 97
(ASCII table), write the assembly code for the example below using
linear search.

char c;

switch (c¢) {
case 'a’: stmt1;
case 'b’: stmt2; break;
case 'c’: stmt3; break;
case 'd’: stmté4;

}
stmts;

22

Food for thoughts: on the dangers of fallthrough switch cases

With C (and many other languages), default behaviour is to
fallthrough to next case, unless break is used. This behaviour directly
matches assembly code.

This is often a source of bugs if programmers forget to use break !

To prevent this:

- Some languages makes it mandatory to have a break (e.g. CH).

- Many languages (e.g. Scala, Pascal, Ada) opt to have an implicit
break by default and don't allow fallthrough.

- Others don't fallthrough unless next (continue) is used at the end
of the case.

23

Exercise

Knowing that the character 'a’ corresponds to the decimal value 97
(ASCII table), write the assembly code for the example below using
linear search.

char c;

switch (c) {
case 'a’': stmt1;
case 'b’: stmt2; break;
case 'c’: stmt3; break;
case 'd’': stmt4;

1

stmt5;

Exercise : can you do it without any conditional jumps?

Hint: use the JR MIPS instruction which jumps directly to an address
stored in a register.

We can now find the matching case in O(1)!

24

Control-Flow

Code Generation

Pattern-Matching Statements

No register to return this time.

Statement code generator class

class StmtCodeGen {

void visit(Stmt stmt) {
switch (stmt) {
case ... ->
case ... ->
1
}
}

25

Pattern-Matching Statements

If statement

case If ifStmt -> {
Register cond = (new ExprCodeGen ()).visit(ifStmt.cond);

Label elselLbl = new Label();
Label endLbl = new Label();

emit(”"beq”, cond, zeroReg, elselbl);

visit(ifStmt.then);
emit(”j”, endLbl);

emit(elselLbl);
visit (ifStmt.els); // assumes else is present

emit(endLbl);

26

Next lecture

More code generation:

- Memory Allocation
- Function Call

- References vs. Values

27

	Logical & Relational Operators
	Code Generation

	Control-Flow
	Code Generation

