
Compiler Design
Lecture 10: Semantic Analysis: part II Types

Christophe Dubach
Winter 2023

Timestamp: 2023/01/31 11:58:00

1

Table of contents

Type Systems

Specification

Type properties

Inference Rules

Inference Rules

Environments

Function Call

Implementation with Pattern-Matching

2

Type Systems

Type Systems

Specification

What are types used for?

Checking that identifiers are declared and used
correctly is not the only thing that needs to be
verified in the compiler.

In most programming languages, expressions
have a type.

Types are here to ensure that expressions are
compatible with one another to guarantee some
level of correctness.

source: https://xkcd.com/1537/ (CC BY-NC 2.5)

3

https://xkcd.com/1537/

Examples: typing rules of our Mini-C language

• The operands of + must be integers
• The operands of ==must be compatible (int with int , char with char)
• The number of arguments passed to a function must be equal to
the number of parameters

• . . .

4

Type Systems

Type properties

Typing properties

Strong/weak typing
A language is said to be strongly typed if the violation of a typing
rule results in an error.

A language is said to be weakly typed or not typed in other cases —
in particular if the program behaviour becomes unspecified after
an incorrect typing.

Strong/weak typing is about how strictly types are distinguished
(e.g. implicit conversion).

Static/dynamic typing
A language is said to be statically typed if there exists a type
system that can detect incorrect programs before execution.

A language is said to be dynamically types in other cases.

Static/dynamic typing is about when type information is available

5

Exclamation-Triangle A strongly typed language does not imply static typing. Exclamation-Triangle

Language examples

strong weak
static Java C/C++
dynamic Python JavaScript

Java (static/strong)

c lass A { }
c lass B { }
B b = new B () ;
A a = (A) b ;
// compile − time er ro r

Python (dynamic/strong)

1+ ’ a ’
run − time er ro r

C (static/weak)

i n t * p1 ;
char ** p2 ;
p1 = (i n t *) p2 ;
// no er ro r

JavaScript (dynamic/weak)

3 + ’ 6 ’ ; // ’ 36 ’
3 * ’ 6 ’ ; // 18

num = 1 1 ;
num . toUpperCase () ;
// run − time er ro r 6

Weak dynamic typing: the worst of the worst!

JavaScript

num = 1 1 ;
num . toUpperCase () ;
// run − time er ro r

3 + ’ 6 ’ ; // ’ 36 ’
3 * ’ 6 ’ ; // 18
// no er ro r

source: http://gunshowcomic.com/648

7

http://gunshowcomic.com/648

Goal

We want to give an exact specification of the language.

• We will formally define this, using a mathematical notation.
• Programs who pass the type checking phase are well-typed
since they corresponds to programs for which is it possible to
give a type to each expression.

This mathematical description will fully specify the typing rules of
our language.

8

Inference Rules

Suppose that we have a small language expressing constants
(integer literal), the + binary operation and the type int.

Example: language for arithmetic expressions
Constants i = a number (integer literal)
Express ions e = i

| e1 + e2
Types T = int

9

Type judgement

We want to define a type judgement (a.k.a. statement):

` e : τ

In english: I can “conclude” that expression e has type τ .

10

Inference Rules

Inference Rules

An expression e is of type T iff:

• it’s an expression of the form i and T = int or
• it’s an expression of the form e1 + e2, where e1 and e2 are two
expressions of type int and T = int

To represent such a definition, it is convenient to use inference rules
which in this context is called a typing rule:

Typing rules

IntLit
` i : int

BinOp
` e1 : int ` e2 : int

` e1 + e2 : int

11

Typing rules

IntLit
` i : int

BinOp
` e1 : int ` e2 : int

` e1 + e2 : int

An inference rule is composed of:

• a horizontal line
• a name on the left or right of the line
• a list of premisses placed above the line
• a conclusion placed below the line

An inference rule where the list of premisses is empty is called an
axiom.

12

An inference rule can be read bottom up:

Example

BinOp
` e1 : int ` e2 : int

` e1 + e2 : int

“To show that an expression of the form e1 + e2 has type int, we
need to show that e1 and e2 have the type int”.

• To show that the conclusion of a rule holds, it is enough to
prove that the premisses are correct

• This process stops when we encounter an axiom.

13

Using the inference rule representation, it possible to see whether
an expression is well-typed.

Example: (1+2)+3

BinOp
BinOp

IntLit
` 1 : int

IntLit
` 2 : int

` 1 + 2 : int
IntLit

` 3 : int

` (1 + 2) + 3 : int

Such a tree is called a derivation tree.

Conclusion
An expression e has type T iff there exist a derivation tree whose
conclusion is ` e : T .

14

Inference Rules

Environments

Identifiers

Let’s add identifiers to our language.

Example: language for arithmetic expressions
I d e n t i f i e r s x = a name (string literal)
Constants i = a number (integer literal)
Express ions e = i

| e1 + e2
| x

Types T = int

To determine if an expression such as x+1 is well-typed, we need to
have information about the type of x.

We add an environment Γ to our typing rules which associates a type
for each identifier.

Our type judgement are now written as: Γ ` e : τ .

In english: given Γ, I can conclude e has type τ .
15

Environment

A typing environment Γ is list of pairs of an identifier x and a type T .

It can be implemented in two ways in the compiler:

• As a symbol table;
• Or directly encoded in the AST nodes:
e.g. VarExpr node has a reference to the declaration (filled in
during Name Analysis)

16

We can add an inference rule to decide when an expression
containing an identifier is well-typed:

Ident
x : T ∈ Γ

Γ ` x : T

Example: x + 1
In the environment Γ = {x : int}, it is possible to type check x + 1

BinOp
Ident

x : int ∈ Γ

Γ ` x : int
IntLit

Γ ` 1 : int
Γ ` x + 1 : int

17

Inference Rules

Function Call

Function call

We need to add a notation to talk about the type of the functions.

Example: language for arithmetic expressions
I d e n t i f i e r s x = a name (string literal)
Constants i = a number (integer literal)
Express ions e = i

| e1 + e2
| x

Types T , U = int
| (U1, . . . ,Un) → T

where (U1, . . . ,Un) → T represents a function type.

18

Function call inference rule

FunCall(f)
Γ ` f : (U1, . . . ,Un) → T Γ ` x1 : U1 . . . Γ ` xn : Un

Γ ` f (x1, . . . , xn) : T

In plain English:

• each argument xi must be of type Ui
• the function f is defined in the environment Γ as a function
taking parameters of types U1, . . . ,Un and a return type T .

Example: int foo(int, int)

FunCall(foo)
Γ ` foo : (int, int) → int Γ ` x1 : int Γ ` x2 : int

Γ ` foo(x1, x2) : int

19

Implementation with
Pattern-Matching

TypeChecker

c lass TypeChecker {

Type v i s i t (ASTnode node) {
return switch (node) {

. . .
}

}

}

The visit method returns the type inferred for the AST node (if any).

20

BinOp(+)
` e1 : int ` e2 : int

` e1 + e2 : int

TypeChecker : binary operation
. . .
case BinOp bo → {
Type lhsT = bo . lhs . v i s i t () ;
Type rhsT = bo . rhs . v i s i t () ;
i f (bo . op == ADD) {
i f (lhsT == Type . INT && rhsT == Type . INT) {
bo . type = Type . INT ; // set the type
y i e l d Type . INT ; // returns i t

} e lse
er ror () ;
y i e l d Type . INVALID ;

}
}
. . .

21

TypeChecker: variables

case VarDecl vd → {
i f (vd . type == VOID)
e r ro r () ;

y i e l d Type . NONE ;
}

case Var v → {
v . type = v . vd . type ;
y i e l d v . vd . type ;

}

Not just analysis!
The type checker does more than analysing the AST: it also
remembers the result of the analysis directly in the AST node.

22

FunCall(f)
Γ ` f : (U1, . . . ,Un) → T Γ ` x1 : U1 . . . Γ ` xn : Un

Γ ` f (x1, . . . , xn) : T

Exercise: write the case for function call
case FunCal l f c → {

}

23

Conclusion

• Typing rules can be formally defined using inference rules.
• We saw how to implement them with a pattern-matching

Next lecture:

• An introduction to MIPS Assembly

24

	Type Systems
	Specification
	Type properties

	Inference Rules
	Inference Rules
	Environments
	Function Call

	Implementation with Pattern-Matching

