
Compiler Design

Lecture 4: Automatic Lexer Generation

(EaC§2.4)

Christophe Dubach

Winter 2022

Timestamp: 2022/01/05 15:38:46

1

Table of contents

Finite State Automata for Regular Expression

Finite State Automata

Non-determinism

From Regular Expression to Generated Lexer

Regular Expression to NFA

From NFA to DFA

Final Remarks

2

Automatic Lexer Generation

Scanner
Source
code

Tokeniser
token

char

 Parser
AST

Semantic
Analyser

AST

Lexer

IR
Generator

IR

Errors

� Starting from a collection of regular expressions (RE) we

automatically generate a Lexer.

� We use finite state automata (FSA) for the construction

3

Finite State Automata for

Regular Expression

Finite State Automata for

Regular Expression

Finite State Automata

Definition: finite state automata

A finite state automata is defined by:

� S , a finite set of states

� Σ, an alphabet, or character set used by the recogniser

� δ(s, c), a transition function

(takes a state and a character as input, and returns new state)

� s0, the initial or start state

� SF , a set of final states (a stream of characters is accepted iif the

automata ends up in a final state)

4

Finite State Automata for Regular Expression

Example: register names

r e g i s t e r : := ’ r ’ (’ 0 ’ | ’ 1 ’ | . . . | ’ 9 ’) (’ 0 ’ | ’ 1 ’ | . . . | ’ 9 ’) ∗

The RE (Regular Expression) corresponds to a recogniser

(or finite state automata):

s0 s1 s2
’r’

’0’|’1’|...|’9’

’0’|’1’|...|’9’

5

s0 s1 s2
’r’

’0’|’1’|...|’9’

’0’|’1’|...|’9’

Finite State Automata (FSA) operation:

� Start in state s0 and take transitions on each input character

� The FSA accepts a word x iff x leaves it in a final state (s2)

Examples:

� r17 takes it through s0, s1, s2 and accepts

� r takes it through s0, s1 and fails

� a starts in s0 and leads straight to failure

6

Table encoding and skeleton code

To be useful a recogniser must be turned into code

s0 s1 s2
’r’

’0’|’1’|...|’9’

’0’|’1’|...|’9’

Table encoding RE

δ ’r’ ’ 0 ’ | ’ 1 ’ | . . . | ’ 9 ’ others

s0 s1 error error

s1 error s2 error

s2 error s2 error

Skeleton recogniser

c = n e x t c h a r a c t e r

s t a t e = s0

w h i l e (c 6= EOF)

s t a t e = δ(state, c)

c = n e x t c h a r a c t e r

i f (s t a t e f i n a l)

r e t u r n s u c c e s s

e l s e

r e t u r n e r r o r

7

Finite State Automata for

Regular Expression

Non-determinism

Deterministic Finite Automaton

Each RE corresponds to a Deterministic Finite Automaton (DFA).

However, it might be hard to construct directly.

What about an RE such as (a|b)∗abb ?

s0 s1 s2 s3 s4
ε

a|b

a b b

This is a little different:

� s0 has a transition on ε, which can be followed without consuming

an input character

� s1 has two transitions on a

� This is a Non-determinisitic Finite Automaton (NFA)

8

Non-deterministic vs deterministic finite automata

Deterministic finite state automata (DFA):

� All edges leaving the same node have distinct labels

� There is no ε transition

Non-deterministic finite state automata (NFA):

� Can have multiple edges with same label leaving from the same node

� Can have ε transition

� This means we might have to backtrack

Backtracking example for a NFA: input = aabb

s0 s1 s2 s3 s4
ε

a|b

a b b

9

From Regular Expression to

Generated Lexer

Automatic Lexer Generation

It is possible to systematically generate a lexer for any regular expression.

This can be done in three steps:

1. regular expression (RE) → non-deterministic finite automata (NFA)

2. NFA → deterministic finite automata (DFA)

3. DFA → generated lexer

10

From Regular Expression to

Generated Lexer

Regular Expression to NFA

1st step: RE → NFA (Ken Thompson, CACM, 1968)

“x ′′ s0 s1
x

[M] s0 s1
M

ε

M|N s0

s1 s2

s3 s4

s5

ε

M

ε

ε

N

ε

M N

s0 s1 s2 s3
M ε N

M∗

s0 s1 s2 s3
ε

ε

M ε

ε

M+

s0 s1 s2 s3
ε M ε

ε

11

Example: a(b|c)∗

s0 s1 s2 s3

s4 s5

s6 s7

s8 s9
a ε ε

ε

ε

ε

b

ε

c

ε

ε

ε

A human would do: s0 s1
a

b|c

12

From Regular Expression to

Generated Lexer

From NFA to DFA

Step 2: NFA → DFA

Executing a non-deterministic finite automata requires backtracking,

which is inefficient. To overcome this, we need to construct a DFA from

the NFA.

The main idea:

� We build a DFA which has one state for each set of states the NFA

could end up in.

� A set of state is final in the DFA if it contains the final state from

the NFA.

� Since the number of states in the NFA is finite (n), the number of

possible sets of states (i.e. powerset) is also finite:

� maximum 2n (hint: set encoded as binary vectors)

13

Assuming the state of the NFA are labelled si and the states of the DFA

we are building are labelled qi .

We have two key functions:

� reachable(si , α) returns the set of states reachable from si by

consuming character α

� ε-closure(si) returns the set of states reachable from si by ε (e.g.

without consuming a character)

14

The Subset Construction algorithm (Fixed point iteration)
q0 = ε-closure(s0) ; Q = {q0} ; add q0 to WorkList

w h i l e (WorkLis t not empty)

remove q from WorkList

f o r each α ∈ Σ

subset = ε-closure(reachable(q, α))

δ(q, α) = subset

i f (subset /∈ Q) then

add subset to Q and to WorkList

The algorithm (in English)

� Start from start state s0 of the NFA, compute its ε-closure

� Build subset from all states reachable from q0 for character α

� Add this subset to the transition table/function δ

� If the subset has not been seen before, add it to the worklist

� Iterate until no new subset are created

15

Informal proof of termination

� Q contains no duplicates (test before adding)

� similarly we will never add twice the same subset to the worklist

� bounded number of states; maximum 2n subsets, where n is number

of state in NFA

⇒ the loop halts

End result

� S contains all the reachable NFA states

� It tries each symbol in each si

� It builds every possible NFA configuration

⇒ Q and δ form the DFA

16

NFA → DFA

a(b|c)∗

s0 s1 s2 s3

s4 s5

s6 s7

s8 s9
a ε ε

ε

ε

ε

b ε

c

ε

ε

ε

ε-closure(reachable(q, α))

NFA states a b c

q0 s0 q1 none none

q1 s1, s2, s3,

s4, s6, s9

none q2 q3

q2 s5, s8, s9,

s3, s4, s6

none q2 q3

q3 s7, s8, s9,

s3, s4, s6

none q2 q3

17

Resulting DFA for a(b|c)∗

Graph

q0 q1

q2

q3

a

b

c

b

c

c

b

Table encoding

a b c

q0 q1 error error

q1 error q2 q3

q2 error q2 q3

q3 error q2 q3

� Smaller than the NFA

� All transitions are deterministic (no need to backtrack!)

� Could be even smaller

(see EaC§2.4.4 Hopcroft’s Algorithm for minimal DFA)

� Can generate the lexer using skeleton recogniser seen earlier

18

Final Remarks

What can be so hard?

Poor language design can complicate lexing:

� PL/I does not have reserved words (keywords):

if (cond) then then = else ; else else = then

� In Fortran & Algol68 blanks (whitespaces) are insignificant:

do 10 i = 1,25 ∼= do 10 i = 1,25 (loop, 10 is statement label)

do 10 i = 1.25 ∼= do10i = 1.25 (assignment)

� In C,C++,Java string constants can have special characters:

newline, tab, quote, comment delimiters, . . .

19

Good language design makes lexing simpler:

� e.g. identifier cannot start with a digit in most modern languages

⇒ when we see a digit, it can only be the start of a number!

What does a C lexer sees?

u24 ; // i d e n t i f i e r u24

2 4 ; // s i g n ed number 24

24u ; // uns i gned number 24

20

Building Lexer

The important point:

� All this technology lets us automate lexer construction

� Implementer writes down regular expressions

� Lexer generator builds NFA, DFA and then writes out code

� This reliable process produces fast and robust lexers

For most modern language features, this works:

� As a language designer you should think twice before introducing a

feature that defeats a DFA-based lexer

� The ones we have seen (e.g. insignificant blanks, non-reserved

keywords) have not proven particularly useful or long lasting

21

Lexer generators input example

https://www.cs.mcgill.ca/~cs520/2022/resources/

ANSI-C-grammar-l.html

(” [” |” < : ”) { count () ; r e t u r n (’ [’) ; }

Wait a minute, what’s going on here??

22

https://www.cs.mcgill.ca/~cs520/2022/resources/ANSI-C-grammar-l.html
https://www.cs.mcgill.ca/~cs520/2022/resources/ANSI-C-grammar-l.html

Next lecture

Parsing:

� Context-Free Grammars

� Dealing with ambiguity

� Recursive descent parser

23

	Finite State Automata for Regular Expression
	Finite State Automata
	Non-determinism

	From Regular Expression to Generated Lexer
	Regular Expression to NFA
	From NFA to DFA

	Final Remarks

