Compiler Design

Lecture 4: Automatic Lexer Generation
(EaC§2.4)

Christophe Dubach
Winter 2022
Table of contents

Finite State Automata for Regular Expression
 Finite State Automata
 Non-determinism

From Regular Expression to Generated Lexer
 Regular Expression to NFA
 From NFA to DFA

Final Remarks
Starting from a collection of regular expressions (RE) we automatically generate a Lexer.

We use *finite state automata* (FSA) for the construction.
Finite State Automata for Regular Expression
Finite State Automata for Regular Expression

Finite State Automata
Definition: finite state automata

A finite state automata is defined by:

- S, a finite set of states
- Σ, an alphabet, or character set used by the recogniser
- $\delta(s, c)$, a transition function
 (takes a state and a character as input, and returns new state)
- s_0, the initial or start state
- S_F, a set of final states (a stream of characters is accepted if the automata ends up in a final state)
Example: register names

\[\text{register} ::= \ 'r' ('0' | '1' | \ldots | '9') ('0' | '1' | \ldots | '9')^* \]

The RE (Regular Expression) corresponds to a recogniser (or finite state automata):
Finite State Automata (FSA) operation:

- Start in state s_0 and take transitions on each input character
- The FSA accepts a word x iff x leaves it in a final state (s_2)

Examples:

- $r17$ takes it through s_0, s_1, s_2 and accepts
- r takes it through s_0, s_1 and fails
- a starts in s_0 and leads straight to failure
To be useful a recogniser must be turned into code

Table encoding and skeleton code

Skeleton recogniser

```c
#define EOF -1

char c = next character
state = s0
while (c != EOF)
    state = δ(state, c)
c = next character
if (state final)
    return success
else
    return error
```
Finite State Automata for Regular Expression

Non-determinism
Deterministic Finite Automaton

Each RE corresponds to a Deterministic Finite Automaton (DFA). However, it might be hard to construct directly.

What about an RE such as \((a | b)^{*}abb\) ?

This is a little different:

- \(s_0\) has a transition on \(\epsilon\), which can be followed without consuming an input character
- \(s_1\) has two transitions on a
- This is a Non-deterministic Finite Automaton (NFA)
Non-deterministic vs deterministic finite automata

Deterministic finite state automata (DFA):
- All edges leaving the same node have distinct labels
- There is no ε transition

Non-deterministic finite state automata (NFA):
- Can have multiple edges with same label leaving from the same node
- Can have ε transition
- This means we might have to backtrack

Backtracking example for a NFA: input = aabb

```
\begin{array}{c}
\text{ $a$} \\
\text{ $b$}
\end{array}
```

```
\begin{array}{c}
 s_0 \xrightarrow{\varepsilon} s_1 \\
 s_1 \xrightarrow{a} s_2 \\
 s_2 \xrightarrow{b} s_3 \\
 s_3 \xrightarrow{b} s_4
\end{array}
```
From Regular Expression to Generated Lexer
It is possible to systematically generate a lexer for any regular expression. This can be done in three steps:

1. regular expression (RE) \rightarrow non-deterministic finite automata (NFA)
2. NFA \rightarrow deterministic finite automata (DFA)
3. DFA \rightarrow generated lexer
From Regular Expression to Generated Lexer

Regular Expression to NFA
1st step: RE → NFA (Ken Thompson, CACM, 1968)

"x"

\[
\begin{align*}
\text{[M]} & \\
M | N & \\
M^+ & \\
M^* & \\
\end{align*}
\]
Example: $a(b|c)^*$

A human would do: $s_0 \xrightarrow{a} s_1$
From Regular Expression to Generated Lexer

From NFA to DFA
Executing a non-deterministic finite automata requires backtracking, which is inefficient. To overcome this, we need to construct a DFA from the NFA.

The main idea:

- We build a DFA which has one state for each set of states the NFA could end up in.
- A set of state is final in the DFA if it contains the final state from the NFA.
- Since the number of states in the NFA is finite (n), the number of possible sets of states (i.e. powerset) is also finite:
 - maximum 2^n (hint: set encoded as binary vectors)
Assuming the state of the NFA are labelled s_i and the states of the DFA we are building are labelled q_i.

We have two key functions:

- $\text{reachable}(s_i, \alpha)$ returns the set of states reachable from s_i by consuming character α
- ϵ-closure(s_i) returns the set of states reachable from s_i by ϵ (e.g. without consuming a character)
The Subset Construction algorithm (Fixed point iteration)

1. \(q_0 = \epsilon\text{-}closure(s_0) \); \(Q = \{ q_0 \} \); add \(q_0 \) to WorkList
2. while (WorkList not empty)
 - remove \(q \) from WorkList
 - for each \(\alpha \in \Sigma \)
 - subset = \(\epsilon\text{-}closure(\text{reachable}(q, \alpha)) \)
 - \(\delta(q, \alpha) = \text{subset} \)
 - if (subset \(\notin Q \)) then
 - add subset to \(Q \) and to WorkList

The algorithm (in English)

- Start from start state \(s_0 \) of the NFA, compute its \(\epsilon\text{-}closure \)
- Build subset from all states reachable from \(q_0 \) for character \(\alpha \)
- Add this subset to the transition table/function \(\delta \)
- If the subset has not been seen before, add it to the worklist
- Iterate until no new subset are created
Informal proof of termination

- Q contains no duplicates (test before adding)
- similarly we will never add twice the same subset to the worklist
- bounded number of states; maximum 2^n subsets, where n is number of state in NFA

\Rightarrow the loop halts

End result

- S contains all the reachable NFA states
- It tries each symbol in each s_i
- It builds every possible NFA configuration

\Rightarrow Q and δ form the DFA
\[a(b|c)^* \]
Resulting DFA for \(a(b|c)^* \)

Graph

<table>
<thead>
<tr>
<th>Table encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
</tr>
<tr>
<td>(q_1)</td>
</tr>
<tr>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_3)</td>
</tr>
</tbody>
</table>

- Smaller than the NFA
- All transitions are deterministic (no need to backtrack!)
- Could be even smaller
 (see EaC§2.4.4 Hopcroft’s Algorithm for minimal DFA)
- Can generate the lexer using skeleton recogniser seen earlier
Final Remarks
What can be so hard?

Poor language design can complicate lexing:

- **PL/I** does not have reserved words (keywords):
  ```plaintext
  if (cond) then then = else; else else = then
  ```

- In **Fortran & Algol68** blanks (whitespaces) are insignificant:
  ```plaintext
  do 10 i = 1.25 ≃ do 10 i = 1,25 (loop, 10 is statement label) 
do 10 i = 1.25 ≃ do10i = 1.25 (assignment)
  ```

- In **C, C++, Java** string constants can have special characters: newline, tab, quote, comment delimiters, …
Good language design makes lexing simpler:

- e.g. identifier cannot start with a digit in most modern languages
 ⇒ when we see a digit, it can only be the start of a number!

What does a C lexer sees?

```
u24; // identifier u24
24;  // signed number 24
24u; // unsigned number 24
```
The important point:

- All this technology lets us automate lexer construction
- Implementer writes down regular expressions
- Lexer generator builds NFA, DFA and then writes out code
- This reliable process produces fast and robust lexers

For most modern language features, this works:

- As a language designer you should think twice before introducing a feature that defeats a DFA-based lexer
- The ones we have seen (e.g. insignificant blanks, non-reserved keywords) have not proven particularly useful or long lasting
Lexer generators input example

("[" | "<:"")

{ count(); return ('['); }

Wait a minute, what’s going on here??
Next lecture

Parsing:

- Context-Free Grammars
- Dealing with ambiguity
- Recursive descent parser