Compiler Design

Lecture 17: Register allocation

Christophe Dubach
Winter 2022

Timestamp: 2022/03/10 16:40:00
Graph Colouring Register Allocation (EaC§13)
1. Build an interference graph (a.k.a. “conflict” graph)
 - Nodes = variables (virtual registers)
 - Edges = overlapping live ranges

2. Find a k-colouring of the graph
 - Colours = architectural registers
What is an interference graph? (also called conflict graph)

- Two values interfere if there exists a point in the program where both are simultaneously live
- If x and u interfere, they cannot occupy the same register

To compute interferences, we must know where values are live

- \Rightarrow result of liveness analysis

Interference graph G

- Nodes in G represents variables (or virtual registers)
- Edges in G represents interference between two variables (or virtual registers)
k-colouring of conflict graph

k-colourable graph

A graph G is k-colourable iff the nodes can be labelled (or colored) such that no edge in G connects two nodes with the same label (or color).

Examples:

![2-colourable graph](image1)

![3-colourable graph](image2)

If we can find a k-colouring of the interference graph, then all the nodes (variables) with the same colour can share the same architectural register, assuming at least k registers available.
Back to the main idea

1. Build an interference graph
2. Find a k-colouring of the graph
1. Building interference graph

Pseudo-assembly:

```plaintext
a = 0
L1: b = a + 1
c = c + b
a = b*2
if (a<9) goto L1
return c
```
1. Building interference graph

Pseudo-assembly:

\[
\begin{align*}
 &a = 0 \\
 &L1: b = a + 1 \\
 &
 &c = c + b \\
 &a = b \times 2 \\
 &\text{if } (a < 9) \text{ goto L1} \\
 &\text{return } c
\end{align*}
\]

Control flow graph:

![Control flow graph diagram]
1. Building interference graph

Pseudo-assembly:

\[
\begin{align*}
a & = 0 \\
L1: \ b & = a + 1 \\
c & = c + b \\
a & = b \times 2 \\
\text{if } (a < 9) \text{ goto } L1 \\
\text{return } c
\end{align*}
\]

Control flow graph:

Liveness:

<table>
<thead>
<tr>
<th>node</th>
<th>out in</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
</tr>
<tr>
<td>5</td>
<td>ac ac</td>
</tr>
<tr>
<td>4</td>
<td>ac bc</td>
</tr>
<tr>
<td>3</td>
<td>bc bc</td>
</tr>
<tr>
<td>2</td>
<td>bc ac</td>
</tr>
<tr>
<td>1</td>
<td>ac c</td>
</tr>
</tbody>
</table>
1. Building interference graph

Pseudo-assembly:

```plaintext
a = 0
L1: b = a + 1
c = c + b
a = b*2
if (a<9) goto L1
return c
```

Control flow graph:

```
entry
1: a = 0
2: b = a + 1
3: c = c + b
4: a = b * 2
5: a < 9
  True
  6: return c
  False
```

Liveness:

```
<table>
<thead>
<tr>
<th>node</th>
<th>out</th>
<th>in</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ac</td>
<td>ac</td>
</tr>
<tr>
<td>4</td>
<td>ac</td>
<td>bc</td>
</tr>
<tr>
<td>3</td>
<td>bc</td>
<td>bc</td>
</tr>
<tr>
<td>2</td>
<td>bc</td>
<td>ac</td>
</tr>
<tr>
<td>1</td>
<td>ac</td>
<td>c</td>
</tr>
</tbody>
</table>
```

Interference graph:

```
c
  a
  b
```
Graph colouring and register mapping

Graph colouring:

```
Virtual to architectural registers
• a → $t0
• b → $t0
• c → $t1
```

(pseudo-)assembly final code:
```
$t0 = 0
L1: $t0 = $t0 + 1
$t1 = $t1 + $t0
$t0 = $t0 * 2
if ($t0 < 9) goto L1
return $t1
```

Job done! Or is it?
2. Graph colouring and register mapping

Graph colouring:

Virtual to architectural registers

Possible mapping:

• a → \$t0
• b → \$t0
• c → \$t1

(pseudo-)assembly final code:

\$t0 = 0
L1: \$t0 = \$t0 + 1
\$t1 = \$t1 + \$t0
\$t0 = \$t0 * 2
if (\$t0 < 9) goto L1
return \$t1

Job done! Or is it?
Graph colouring:

Virtual to architectural registers
Possible mapping:

- a → t_0
- b → t_0
- c → t_1

(pseudo-)assembly final code:

```
$t_0 = 0$
$L_1: t_0 = t_0 + 1$
$t_1 = t_1 + t_0$
$t_0 = t_0 \times 2$
if ($t_0 < 9$) goto $L_1$
return $t_1$
```

Job done! Or is it?
2. Graph colouring and register mapping

Graph colouring:

Virtual to architectural registers

Possible mapping:

- a → $t0$
- b → $t0$
- c → $t1$

(pseudo-)assembly final code:

```
$t0 = 0
L1: $t0 = $t0 + 1
$t1 = $t1 + $t0
$t0 = $t0 * 2
if ($t0 < 9) goto L1
return $t1
```

Job done! Or is it?
2. Graph colouring and register mapping

Graph colouring:

Virtual to architectural registers

Possible mapping:

- a → $t0$
- b → $t0$
- c → $t1$

(pseudo-)assembly final code:

```assembly
$t0 = 0
L1: $t0 = $t0 + 1
$t1 = $t1 + $t0
$t0 = $t0*2
if ($t0<9) goto L1
return $t1
```
2. Graph colouring and register mapping

Graph colouring:

Virtual to architectural registers

Possible mapping:

- $a \rightarrow \$t0$
- $b \rightarrow \$t0$
- $c \rightarrow \$t1$

(pseudo-)assembly final code:

```
$t0 = 0
L1: \$t0 = $t0 + 1
$\text{if ($t0 < 9$) goto L1}
return $t1
```

Job done! Or is it?
Challenges

- Graph colouring is NP-complete
 - Complexity is exponential
 - We don’t like such algorithms in our compilers!

- It might not be possible to colour a graph with k colours.
 - Need alternative strategy in these cases
Heuristic for Graph Colouring
Observations

Suppose we have \(k \) architectural registers (or \(k \) colours):

- Any vertex \(n \) that has fewer than \(k \) neighbours in the interference graph \(\text{degree}(n) < k \) can always be coloured!
- In such case, pick any colour not used by its neighbours — there must be one!
• Pick any vertex n such that $\text{degree}(n) < k$ and put it on the stack
• Remove that vertex n and all connected edges from the graph
 • This may make some new nodes have fewer than k neighbours
• In the end, if some vertex n still has k or more neighbours, then spill the variable associated with n to memory
• Otherwise successively pop vertices off the stack and colour them in the lowest colour not used by some neighbour
1. While ∃ vertices with < k neighbours in G
 • Pick any vertex n such that degree(n) < k and put it on a stack
 • Remove that vertex and all connected edges from G
 • This will lower the degree of n’s neighbours

2. If G is non-empty (all vertices have k or more neighbours) then:
 • Pick a vertex n (using some heuristic) and spill the variable associated with n
 • Remove vertex n from G, along with all connected edges
 • If this causes some vertex in G to have fewer than k neighbours, then go to step 1; otherwise, repeat step 2

3. Successively pop vertices off the stack and colour them in a colour not used by the neighbours
Example with 3 registers

3 Registers

Stack
Example with 3 registers

3 Registers

Stack

1

2 4 5

3

Diagram showing a stack and connected nodes.
Example with 3 registers
Example with 3 registers
Example with 3 registers

3 Registers

Stack

Colors:
1:
2:
3:

5
3
4
2
1
Example with 3 registers
Example with 3 registers
Example with 3 registers
Example with 3 registers

3 Registers

Stack

Colors:
1:
2:
3:
Example with 3 registers

3 Registers

Stack

Colors:
1:
2:
3:

Diagram showing a network of 5 nodes labeled 1 to 5 connected by lines, with nodes 2 and 4 double-colored.
Register Spilling
If it is not possible to find a k-colouring of the graph, we need to spill some variables in memory.

The idea is to map some variable to memory rather than register:

- this is what our naive register allocator is doing (for all variables!)

(Other approaches are also possible (e.g. splitting live ranges) but this is the subject of a compiler optimization course.)
Choosing which variable to spill is critical for performance:

- extra load instructions for every use of the variable
- extra store instructions for every def of the variable.

The compiler should use a cost-benefit analysis to decide which variable to spill depending on:

- how often the variable is used/defined?
- how many other variables interfere with the variable?
- is the variable used in a loop?

For your project, simply pick the variable with highest connectivity as it is likely to increase the chances that the graph becomes k-colourable.
Spilling a variable requires a register

Original code (virtual registers):

```
... 
add v0, v1, v2 
... 
```

After register alloc. (v1 spilled):

```
v1: .space 4 
... 
lw $t0, v1 
add $t3, $t0,$t2 
... 
```
Spilling a variable requires a register

Original code (virtual registers):

...
add v0, v1, v2
...

After register alloc. (v1 spilled):

v1: .space 4
...
lw $t0, v1
add $t3, $t0,$t2
...

We have a bit of a 🐔 & 🐝 situation: spilling v1 uses a register!

However, the live range of the register used for spilling is very short! ⇒ it is not so bad.

P.S. usually compilers spill on the stack, not in static area.

source: ShadowThrust at Deviant Art, CC BY-SA 3.0
Two possible solutions:

- **Naive approach**: reserve a set of registers just for spilling purpose (e.g. \{t0\}) and never use them for anything else
 - maximum number of such registers needed = maximum number of registers an instruction can use/def (three for MIPS)
Two possible solutions:

- **Naive approach**: reserve a set of registers just for spilling purpose (e.g. \{\$t0\}) and never use them for anything else
 - maximum number of such registers needed = maximum number of registers an instruction can use/def (three for MIPS)

- **Better approach**: every time a variable needs to be spilled, stop the register allocation process, and replace all the occurrences of the spilled variable with a load/store instruction that uses a virtual register. Then re-run everything:
 - liveness analysis
 - interference graph construction
 - register allocation

Worst case scenario: \(O(n^2)\)
Linear Scan
Uses notion of **live interval**.

Live range (recap):

- the set of all program instructions where the variable is live.

Live interval:

- assumes program represented as a list of instructions
- smallest interval (from/to) of all program instructions that contains all the variable’s live ranges
- this is an approximation of live range information which can be computed much faster.
Live intervals

Control flow graph:

entry

1: a = 0

2: b = a + 1

3: c = c + b

4: a = b * 2

5: a < 9

True

False

6: return c
Control flow graph:

Live ranges:
\[
\begin{align*}
a &= [1; 5] \\
b &= [2; 4] \\
c &= [2; 6]
\end{align*}
\]
Live intervals

Control flow graph:

```
entry
1: a = 0
2: b = a + 1
3: c = c + b
4: a = b * 2
5: a < 9
   True
   L1: b = a + 1
   c = c + b
   a = b*2
   if (a<9) goto L1
5: a < 9
   False
6: return c
```

Live ranges:
- \(a = [1; 5] \)
- \(b = [2; 4] \)
- \(c = [2; 6] \)
Let’s do register allocation with linear scan.

Assuming three architectural registers:

- free registers: \(\{t_0 \ t_1 \ t_2 \} \)
- assigned registers:

```c
a = 0
L1:  b = a + 1
c = c + b
a = b*2
if (a<9) goto L1
return c
```

```
a = 0
L1:  t1 = t0 + 1
t2 = t2 + t1
t0 = t1
if (t0 < 9) goto L1
return t2
```
Let’s do register allocation with **linear scan**.

Assuming three architectural registers:

- **free registers**: `{t1 t2 }
- **assigned registers**: a=t0

```plaintext
a = 0
L1: b = a + 1
c = c + b
a = b*2
if (a<9) goto L1
return c
```
Let’s do register allocation with **linear scan**.

Assuming three architectural registers:

- free registers: \(\{t2\} \)
- assigned registers: \(a=t0 \) \(b=t1 \)

```
# initial values
a = 0
L1: b = a + 1
    c = c + b
    a = b*2
    if (a<9) goto L1
    return c
```
Let’s do register allocation with **linear scan**.

Assuming three architectural registers:

- free registers: {}
- assigned registers: a=$t0 b=$t1 c=$t2
Let’s do register allocation with **linear scan**.

Assuming three architectural registers:

- free registers: \{\$t1\}
- assigned registers: \(a=\$t0\) \(c=\$t2\)

```
L1: a = 0
L1: b = a + 1
L1: c = c + b
L1: a = b*2
    if (a<9) goto L1
L1: return c
```

```
$\$t0 = 0
L1: $\$t1 = \$t0 + 1
L1: $\$t2 = $\$t2 + $\$t1
L1: $\$t0 = $\$t1*2
```
Let’s do register allocation with **linear scan**.

Assuming three architectural registers:

- free registers: \{t0 $t1 \}
- assigned registers: c=$t2

```
a = 0
L1: b = a + 1
c = c + b
a = b*2
if (a<9) goto L1
return c
```

```
$t0 = 0
L1: $t1 = $t0 + 1
$t2 = $t2 + $t1
$t0 = $t1*2
if ($t0<9) goto L1
return $t2
```
Let’s do register allocation with linear scan.

Assuming three architectural registers:

- free registers: \{t0 \ t1 \ t2\}
- assigned registers:

\[
\begin{align*}
 &a = 0 \\
 &L1: \ b = a + 1 \\
 & \ c = c + b \\
 & a = b \times 2 \\
 & \text{if} \ (a < 9) \ \text{goto} \ L1 \\
 & \text{return} \ c
\end{align*}
\]

\[
\begin{align*}
 &t0 = 0 \\
 &L1: \ \ t1 = t0 + 1 \\
 & \ t2 = t2 + t1 \\
 & t0 = t1 \times 2 \\
 & \text{if} \ (t0 < 9) \ \text{goto} \ L1 \\
 & \text{return} \ t2
\end{align*}
\]
Summary

Graph coloring:

- computes live ranges with liveness-flow analysis
- use graph colouring to assign registers
- produces efficient code but at the cost of compilation time

Linear Scan:

- uses live intervals
- assigns registers with a simple linear traversal of the code
- fast compile-time (used in JIT compiler!) but might produce less efficient code
- (previous example needs 3 registers vs. 2 with graph colouring)
Next lecture

- Instruction selection