Compiler Design

Lecture 16: Liveness Analysis

Christophe Dubach
Winter 2022

Some material from Prof. Michelle Strout, CS553, Colorado State University.

Timestamp: 2022/03/08 14:36:00



Example of generated MIPS code After “proper” register allocation

(using virtual registers): (possible output):
.data .data
X: .space &4 X: .space 4
y: .space & y: .space 4
.text .text
la vo, X la $t0, x
w vi, (ve) w $t1, ($to)
add v2, vo, vi add $t2, $to, $t1
la v3, vy la $t3, vy
w v4, (v3) w  $ta, ($t3)
sub v5, v&, v2 sub $t5, $t4, $t2
add v6, v2, v4 add $t6, $t2, $t4
sw v5, (vo) sw $t5, ($t0)
sw v6, (v3) sw $t6, ($t3)

What if less than 7 architectural registers available for allocation?

- Need to know which values is going to be used in the future.



Liveness

Definition

A variable (virtual register) is at some point in the program if it
has previously been by an instruction and will be by
an instruction in the future. It is otherwise.

Q Two variables can use the same architectural register if they are
never used at the same time, i.e. never simulataneously live.

= Register allocation use liveness information.



Example:

.data

X: .space &4

y: .space 4

.text
la vo,
lw vi,
add v2,
la v3,
lw v4,
sub v5,
add vé6,
sw V5,
sw v6,

X
(vo)
vl, vi

y

(v3)
V4, v2
V2, V4
(vo)
(v3)

Live after instruction:

vO
vO
vO
voO
vO
vO
voO

vl

v2
v2
v2
v2

v3

v3 v4

v3 v4 v5

v3 v5 v6
v3 v6

Question: how

many architectural registers are needed?




Computing liveness is more complicated in the presence of control
flow (e.g. loops, if-then-else).

Assembly pseudo-code: '

a =20

L1: b =a + 1
c=c+b
a = b*2
if (a<9) goto L1
return c

Question: what is the live range of b?

To answer this question we need to understand the dynamic flow of
the program execution.

TWe illustrate concepts at a slightly higher level than assembly from this point on.



Control-Flow Graph (CFG)

Concept invented in 1970 by:

Frances Allen (1932-2020), IBM,
(1st woman to receive Turing
Award in 2006!)

a =20

L1: b = a + 1
c=c+b
a = bx2
if (a<9) goto L1
return c

[False

6: return c

Directed graph:

rue


https://commons.wikimedia.org/wiki/File:Allen_mg_2528-3750K-b.jpg

What is the live range of b?
- b is used in statement 4, so b is live on
the 3 — 4 edge
- since statement 3 does not define b, b is
also live on the 2 — 3 edge

- statement 2 defines b, so any value of b
onthe1—2and5 — 2 edges are not
needed, so b is dead along these edges

b live range is2 —3 — 4 False

6: return c




Live range of a:

c1—=2and4 —-5—=2

Live range of b:

c2—=3—=4

Live range of c:

centry -1 —-2—-3—>4—5—2
and5— 6

[False

6: return c

@ Since a and b never simultaneously live, can share a register.




Terminology

Flow Graph

- a Control Flow Graph (CFG) has
out-edges that leads to successor nodes
and in-edges that come from
predecessor nodes

- pred(n) = set of all predecessors of node
n

succ(n) = set of all successors of node n

Examples
- Out-edges of node 5: 5 —+ 6and 5 — 2
- succ(s) = {2,6}
+ pred(5) = {4} \

6: return c
- pred(2) = {1,5} |:|

[False




Uses and Defs

Def (definition)

- A write of a value to a variable 1 o
P as=
- def(v) = set of CFG nodes that define variable v
- def(n) = set of variables defined at node n
Use
- Aread of a variable's value
) 5: a<9
- use(v) = set of CFG nodes that use variable v

- use(n) = set of variables used at node n



More precise definition of liveness

\v live
/ &def(v)
Avariable v is live on a CFG edge if (/ et
- Jadirected path from that edge to a \
use of v (node € use(b)) and ) aefv)
- that path does not go through any def /
of v (nodes ¢ def(v)). ( ¢def(v)
\

\ Euse(v)

1



Computing Liveness




Flow of Liveness

Data-flow

- Liveness of variables is a property that flows through the edges
of the CFG

Direction of flow

- Liveness flows backward in the CFG:
behaviour of future nodes determines liveness at a given node



Example: flow of liveness for a

6: return c

Example: flow of liveness for b

6: return c



Liveness at Nodes

We have liveness on edges SR —
l:a =
- before and after each node ~———just after computation

Two more definitions:

- Avariable is live-out at a node if it is live on any of that node’s
out-edges

- Avariable is live-in at a node if it is live on any of that node’s
in-edges

14



Computing Liveness

Rules for computing liveness

1. Generate liveness:
v € use(n) = v € LIVEj,(n) |

2. Push liveness across edges:
v € LIVEi,(n) = Ypepredn)V € LIVEout(p)

3. Push liveness across nodes:
v € LIVEou:(n) A v ¢ def(n) = v € LIVE;,(n)

Data-flow equations
LIVEjn(n) = | use(n) L U/ (LIVEgui(n) — def(n)) L

LVEoue(n) =| [ J  LIVEn(s)

Vsesucc(n)




Solving the Data-flow equations

1: for all node n € CFG do
2 LIVEj,(n) = @

3 LIVEw(n) = @

4 end for

5. repeat
6
7
8
9

for all node n € CFG do
LIVE,, (n) = LIVE;y(n)

LIVEL ,,(n) = LIVEou(n)
LIVEin(n) = use(n) U (LIVEou:(n) — def(n))
10: LIVEowe(n) = U LIVEp(s)
Vsesucc(n)

11: end for
12: until LIVE],(n) = LIVE;,(n) A LIVE,,;(n) = LIVEgu(n)¥n

This is a fix-point algorithm for iterative liveness analysis.

16



Example

node use def 1st 2nd 3rd 4th Sth 6th 7th
in out|in out|in out|in out|in out|in out|in out

1 a a a ac |c ac |c ac |c ac
2 a b a a bc |ac bc |ac bc |ac bc |ac bc |ac bc
3 bc ¢ bc bc b bc b bc b bc b bc bc | bc bc
4 b a b b a b a b ac |bc ac |bc ac |bc ac
5 a a a a ac |ac ac |ac ac |ac ac |ac ac |ac ac
6 c @ @ c c @ @

Data-flow equations

LIVEj,(n) = use(n) U (LIVEo,t(n) — def (n))
LVEau(n) = () LIVE@(s)

Vsesucc(n)

[False

6: return c




There is something inefficient about this process.

[False

y
6: return c

For instance, consider the 3 — 4 edge in the
graph:
- LIVEgue(4) is used to compute LIVE;,(4)
- LIVEj,(4) is used to compute LIVEy,:(3)

© The algorithm would converge faster if we
process the nodes backwards.



Backward Liveness Analysis

1: for all node n € CFG do

2 LVEn(n) =2

3 LIVEoue(n) = @

4 end for

5. repeat

6 for all node n € CFG in “reverse DFS visited order” do
7 LIVE,, (n) = LIVE;,(n)

8 LIVEL ,(n) = LIVEou:(n)

9

LIVEoue(n) = U LIVEj(S)
Vsesucc(n)
10: LIVEjr(n) = use(n) U (LIVEou:(n) — def(n))
1: end for

12: until LIVE],(n) = LIVEj,(n) A LIVE,:(n) = LIVEou:(n)¥n

19



Example with Backward Liveness Analysis

node use def 1st 2nd 3rd
out in |out in | out in
6 ¢ c c C
5 a ¢ ac | ac ac | ac ac
4 b a ac  bc |ac bc| ac bc
3 bc ¢ bc bc|bc bc|bc bc
2 a b bc ac | bc ac|bc ac
1 a ac C ac C ac C

Converges in only 3 iterations!

Data-flow equations

LVEaue(n) = | J  LIVEs(s)

Vsesucc(n)

|i| LIVE;p(n) = use(n) U (LIVEgu(n) — def(n))

[False

20



More performance considerations

Basic Block
A straight sequence of assembly instruction which (usually) finishes
with a branch/jump instruction.

Key property: Either all the instructions in the sequence execute or
none execute.

Can significantly decrease the size that a CFG occupies in memory by
grouping nodes that have a single predecessor and a single
successor into basic blocks.

The instructions in a basic block can be simply represented as a list
(rather than a graph).

21



Example

No basic blocks:

With basic blocks:

3: return c

[False

6: return c

22



Next lecture

- Proper register allocation

23



	Computing Liveness

